找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intermediate Spectral Theory and Quantum Dynamics; César R. Oliveira Book 2009 Birkh?user Basel 2009 Potential.Quantum Dynamics.Quantum re

[復(fù)制鏈接]
樓主: palliative
51#
發(fā)表于 2025-3-30 11:41:42 | 只看該作者
Unitary Evolution Groups,tes, that is, the solutions of Schrh?dinger equations. In this chapter such relations are described in detail, including standard examples of unitary evolution groups and infinitesimal generators. Different continuity assumptions on the unitary groups are discussed.
52#
發(fā)表于 2025-3-30 15:53:51 | 只看該作者
53#
發(fā)表于 2025-3-30 20:16:34 | 只看該作者
Spectral Theorem,f-adjoint operators. Although a complete proof of this theorem for a given operator is not presented, different approaches to the proof are indicated. Spectral measures of some simple examples are discussed. Chapter 9 is devoted to some consequences of the spectral theorem. . denotes the σ-algebra of Borel sets in ?.
54#
發(fā)表于 2025-3-31 00:30:01 | 只看該作者
Convergence of Self-Adjoint Operators,vergence are introduced. The strong convergences in the resolvent and dynamical senses are shown to be equivalent. Some relations with spectrum are also discussed. Convergence to operators with shrinking domains are discussed with the help of sesquilinear forms, with application to the Aharonov-Bohm effect.
55#
發(fā)表于 2025-3-31 00:55:02 | 只看該作者
Spectral Decomposition I,en atom hamiltonian. Other applications include the discrete spectrum in case of unbounded potentials in ?. and the comparison of the spectra of different self-adjoint extensions (in case of finite deficiency indices).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 05:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉水县| 含山县| 彭山县| 绍兴县| 中方县| 邛崃市| 茌平县| 化德县| 文化| 四平市| 太保市| 常宁市| 微博| 陆良县| 海安县| 南阳市| 峨山| 定陶县| 库车县| 阿荣旗| 怀远县| 佛山市| 宜兰市| 台北市| 新密市| 绩溪县| 七台河市| 长海县| 义马市| 宜兴市| 淳安县| 威海市| 民乐县| 裕民县| 特克斯县| 新民市| 吉林市| 东光县| 锡林郭勒盟| 纳雍县| 府谷县|