找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Intensive Care Medicine; Annual Update 2008 Jean-Louis Vincent (Head) Conference proceedings 2008 Springer-Verlag New York 2008 Internal me

[復(fù)制鏈接]
樓主: 回憶錄
41#
發(fā)表于 2025-3-28 17:25:36 | 只看該作者
deep-learning based algorithms are designed for single image rain steak removal, deraining performance is still limited due to the insufficient utilization of multi-scale features, which either fails to remove rain steaks completely or damages the original image content. In our paper, a novel derain
42#
發(fā)表于 2025-3-28 19:32:09 | 只看該作者
43#
發(fā)表于 2025-3-28 23:01:29 | 只看該作者
44#
發(fā)表于 2025-3-29 05:22:02 | 只看該作者
R. Cartin-Ceba,M. N. Gong,O. Gajicdevelop a new metric in this paper to automatically assess the quality of stereoscopic images with the guidance of reference images. Visual saliency (VS) has been largely explored by researchers in the past decade to find out which areas of an image attract most attention of the viewers. We use the
45#
發(fā)表于 2025-3-29 10:59:04 | 只看該作者
F. B. Mayr,S. Yende,D. C. Angusive tool for medical education. It will be very interesting if we use the eye tracking to predict where pathologists or doctors and persons with no or little experience look at the pathological microscopic image. In the current work, we first establish a pathological microscopic image database with
46#
發(fā)表于 2025-3-29 12:55:23 | 只看該作者
47#
發(fā)表于 2025-3-29 18:59:14 | 只看該作者
P. E. Oishi,J. -H. Hsu,J. R. Fineman watching the lecture videos. 3D Convolutional Networks (3D ConvNet) has been regarded as an efficient approach to learn spatio-temporal features in videos. However, 3D ConvNet gives the same weight to all features in the image, and can’t focus on key feature information. We solve this problem by us
48#
發(fā)表于 2025-3-29 19:58:43 | 只看該作者
I. Cinel,R. Nanda,R. P. Dellingerirectional distribution features to represent nodules in different risk stages effectively. First, the reference map is constructed using integral image, and then K-Means approach is performed to clustering the reference map and calculate its label map. The density distribution map of lung nodule im
49#
發(fā)表于 2025-3-30 03:20:54 | 只看該作者
H. Schmidt,U. Müller-Werdan,K. Werdanirectional distribution features to represent nodules in different risk stages effectively. First, the reference map is constructed using integral image, and then K-Means approach is performed to clustering the reference map and calculate its label map. The density distribution map of lung nodule im
50#
發(fā)表于 2025-3-30 04:31:54 | 只看該作者
B. Lamia,M. R. Pinskyever, due to the limitation of capturing devices, depth images usually suffer from noises. How to remove noises containing in depth images become an important problem, which will benefit many practical applications. Depth image denoising is ill-posed, whose performance largely relies on the prior kn
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 06:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
漯河市| 陆良县| 廉江市| 宝山区| 临武县| 攀枝花市| 德惠市| 普安县| 丰镇市| 洛隆县| 曲麻莱县| 达州市| 新蔡县| 兖州市| 句容市| 新河县| 宣武区| 民丰县| 渝中区| 扬州市| 青川县| 商河县| 化州市| 惠州市| 西畴县| 北安市| 辉县市| 浦北县| 玛纳斯县| 当阳市| 广南县| 威宁| 江川县| 邢台县| 珠海市| 晋宁县| 漠河县| 襄樊市| 张家界市| 乃东县| 丹巴县|