找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent and Evolutionary Systems; The 20th Asia Pacifi George Leu,Hemant Kumar Singh,Saber Elsayed Conference proceedings 2017 The Edit

[復(fù)制鏈接]
樓主: 變成小松鼠
31#
發(fā)表于 2025-3-26 22:57:06 | 只看該作者
32#
發(fā)表于 2025-3-27 02:27:17 | 只看該作者
Analysis of Parameter-Less Population Pyramid on the Local Distribution of Inferior Individuals,fect of DII analysis on balance between genetic operators. The performance of P3-DII was confirmed according to the computational experiments which were carried out taking several combinational problems as examples.
33#
發(fā)表于 2025-3-27 08:32:44 | 只看該作者
34#
發(fā)表于 2025-3-27 13:25:57 | 只看該作者
Generating Hub-Spoke Network for Public Transportation: Comparison Between Genetic Algorithm and Cun of the hub node and transportation line network simultaneously. In this framework, this paper reports the comparison result between the genetic algorithm and the cuckoo search algorithm for the hub location problem.
35#
發(fā)表于 2025-3-27 15:15:59 | 只看該作者
36#
發(fā)表于 2025-3-27 20:15:30 | 只看該作者
An Evolutionary Optimization Approach for Path Planning of Arrival Aircraft for Optimal Sequencing,aircraft. The proposed algorithm is compared with the traditional GA. Results indicate that the proposed approach obtains a near optimal solution compared to the traditional GA based algorithm which does not consider TAS constraints.
37#
發(fā)表于 2025-3-27 23:22:59 | 只看該作者
Obstacle Avoidance for Multi-agent Path Planning Based on Vectorized Particle Swarm Optimization,the path planning. In the dynamic environment, the numerical results show that the Simultaneous Replanning Vectorized Particle Swarm Optimization (SRVPSO) algorithm is effective and also efficient for multi-agent systems.
38#
發(fā)表于 2025-3-28 05:51:38 | 只看該作者
Dynamic Job Shop Scheduling Under Uncertainty Using Genetic Programming,onential moving average of the deviations of the processing times in the dispatching rules. We test the performance of the proposed approach under different uncertain scenarios. Our results show that the proposed method performs significantly better for a wide range of uncertain scenarios.
39#
發(fā)表于 2025-3-28 10:16:19 | 只看該作者
Semi-automatic Picture Book Generation Based on Story Model and Agent-Based Simulation,e propose a novel semi-automatic picture book generation method based on story model and agent-based simulation. The computational experiments are carried out to confirm the effectiveness of the proposed method.
40#
發(fā)表于 2025-3-28 13:45:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 23:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辽阳县| 图木舒克市| 泽州县| 集安市| 崇礼县| 高雄市| 乃东县| 乌拉特中旗| 泊头市| 平陆县| 兴文县| 武清区| 来宾市| 新田县| 肥乡县| 陆丰市| 巴马| 茌平县| 麦盖提县| 西林县| 从江县| 育儿| 丽水市| 泗阳县| 盐源县| 广西| 海原县| 凉城县| 平塘县| 马关县| 镇原县| 五峰| 桃源县| 富民县| 柳州市| 增城市| 福贡县| 昌乐县| 浮梁县| 临桂县| 来凤县|