找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Systems II: Complete Approximation by Neural Network Operators; George A. Anastassiou Book 2016 Springer International Publish

[復(fù)制鏈接]
樓主: eternal
21#
發(fā)表于 2025-3-25 03:31:29 | 只看該作者
22#
發(fā)表于 2025-3-25 08:25:55 | 只看該作者
Fractional Neural Network Operators Approximation,Here we study the univariate fractional quantitative approximation of real valued functions on a compact interval by quasi-interpolation sigmoidal and hyperbolic tangent neural network operators.
23#
發(fā)表于 2025-3-25 14:13:23 | 只看該作者
24#
發(fā)表于 2025-3-25 16:04:21 | 只看該作者
Fractional Voronovskaya Type Asymptotic Expansions for Quasi-interpolation Neural Networks,Here we study further the quasi-interpolation of sigmoidal and hyperbolic tangent types neural network operators of one hidden layer.
25#
發(fā)表于 2025-3-25 21:23:56 | 只看該作者
26#
發(fā)表于 2025-3-26 03:14:21 | 只看該作者
Fractional Approximation by Normalized Bell and Squashing Type Neural Networks,This chapter deals with the determination of the fractional rate of convergence to the unit of some neural network operators, namely, the normalized bell and “squashing” type operators.
27#
發(fā)表于 2025-3-26 06:51:09 | 只看該作者
Fractional Voronovskaya Type Asymptotic Expansions for Bell and Squashing Type Neural Networks,Here we introduce the normalized bell and squashing type neural network operators of one hidden layer.
28#
發(fā)表于 2025-3-26 08:38:37 | 只看該作者
Multivariate Voronovskaya Type Asymptotic Expansions for Normalized Bell and Squashing Type Neural Here we introduce the multivariate normalized bell and squashing type neural network operators of one hidden layer.
29#
發(fā)表于 2025-3-26 15:22:48 | 只看該作者
30#
發(fā)表于 2025-3-26 17:50:22 | 只看該作者
Fuzzy Fractional Approximations by Fuzzy Normalized Bell and Squashing Type Neural Networks,This chapter deals with the determination of the fuzzy fractional rate of convergence to the unit to some fuzzy neural network operators, namely, the fuzzy normalized bell and “squashing” type operators.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伊吾县| 枣强县| 东兴市| 阜康市| 东乌| 汝南县| 柳林县| 阿尔山市| 嘉鱼县| 普定县| 巍山| 汤原县| 嘉兴市| 泸定县| 涞水县| 双峰县| 河北省| 焦作市| 绥棱县| 平邑县| 泾阳县| 磐安县| 永寿县| 朝阳市| 鄂州市| 沙雅县| 黄骅市| 平湖市| 枞阳县| 遂平县| 德阳市| 蒙自县| 玛纳斯县| 利津县| 江陵县| 井研县| 白朗县| 高陵县| 昌宁县| 玉溪市| 龙陵县|