找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Information Processing XII; 13th IFIP TC 12 Inte Zhongzhi Shi,Jim Torresen,Shengxiang Yang Conference proceedings 2024 IFIP Int

[復(fù)制鏈接]
樓主: controllers
31#
發(fā)表于 2025-3-26 22:03:41 | 只看該作者
32#
發(fā)表于 2025-3-27 02:21:00 | 只看該作者
Intelligent Information Processing XII978-3-031-57919-6Series ISSN 1868-4238 Series E-ISSN 1868-422X
33#
發(fā)表于 2025-3-27 06:54:46 | 只看該作者
Early Anomaly Detection in?Hydraulic Pumps Based on?LSTM Traffic Prediction ModelConsequently, devising predictive methods for the main pump flow is crucial for early anomaly detection and efficient maintenance. This paper introduces a predictive method for hydraulic pump flow based on Long Short-Term Memory networks (LSTM), known for their robust handling of temporal data. Util
34#
發(fā)表于 2025-3-27 09:37:55 | 只看該作者
Dynamic Parameter Estimation for?Mixtures of?Plackett-Luce Modelsenario, rank data often updates in real-time, e.g., when users perform operations, such as submitting or withdrawing rankings. This dynamic nature of rank data poses challenges for applying traditional algorithms. To address this issue, we propose parameter estimation algorithms tailored for structu
35#
發(fā)表于 2025-3-27 16:50:13 | 只看該作者
36#
發(fā)表于 2025-3-27 19:19:42 | 只看該作者
37#
發(fā)表于 2025-3-27 22:44:35 | 只看該作者
Utilizing Attention for?Continuous Human Action Recognition Based on?Multimodal Fusion of?Visual anderaction, action perception, and other fields. Currently, most of the work has achieved significant results by utilizing both visual and inertial sensor data, as well as deep learning methods. This method of integrating multimodal information makes the system more robust and adaptable to different e
38#
發(fā)表于 2025-3-28 03:26:25 | 只看該作者
39#
發(fā)表于 2025-3-28 09:25:40 | 只看該作者
CAPPIMU: A Composite Activities Dataset for?Human Activity Recognition Utilizing Plantar Pressure an However, the current public datasets for composite activities are limited in the variety of activities and the number of subjects they include, which hinders a thorough and complete assessment of activity identification methodologies. Regarding these problems, this paper proposes a publicly availab
40#
發(fā)表于 2025-3-28 13:12:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 19:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朝阳县| 盈江县| 措勤县| 凤冈县| 会泽县| 镇平县| 夹江县| 安阳市| 财经| 高青县| 高要市| 陈巴尔虎旗| 平乐县| 洪湖市| 灵石县| 若尔盖县| 常德市| 观塘区| 禹州市| 多伦县| 安乡县| 平凉市| 临朐县| 隆尧县| 仙居县| 宁远县| 石嘴山市| 双城市| 娄底市| 略阳县| 阜城县| 林州市| 老河口市| 迁西县| 藁城市| 桐柏县| 濉溪县| 河南省| 甘孜县| 灵山县| 灌阳县|