找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Information Processing VIII; 9th IFIP TC 12 Inter Zhongzhi Shi,Sunil Vadera,Gang Li Conference proceedings 2016 IFIP Internatio

[復(fù)制鏈接]
樓主: ominous
21#
發(fā)表于 2025-3-25 03:42:16 | 只看該作者
An Attribute-Value Block Based Method of Acquiring Minimum Rule Sets: A Granulation Method to Constr are proposed, which, together with related attribute reduction algorithm, constitute an effective granulation method to acquire minimum rule sets, which is a kind classifier and can be used for class prediction. At last, related experiments are conducted to demonstrate that the proposed methods are effective and feasible.
22#
發(fā)表于 2025-3-25 11:16:37 | 只看該作者
23#
發(fā)表于 2025-3-25 15:40:31 | 只看該作者
Convolutional Neural Networks Optimized by Logistic Regression Modelssifier is a multi-classification logistic regression classifier, also known as softmax regression classifier. Two kinds of classifiers have achieved good results in MNIST handwritten digit recognition.
24#
發(fā)表于 2025-3-25 18:09:19 | 只看該作者
25#
發(fā)表于 2025-3-25 21:01:02 | 只看該作者
Application of Manifold Learning to Machinery Fault Diagnosisding is used to extract the essential nonlinear structure of feature space. Afterwards, the fault diagnosis is implemented with spectral clustering and support vector machine. The experiment demonstrates that the approach can effectively diagnose the fault of Machinery.
26#
發(fā)表于 2025-3-26 03:49:15 | 只看該作者
Boltzmann Machine and its Applications in Image Recognitionn Machine (wssDBM). The experiments showed that, the Weight uncertainty RBM, Weight uncertainty DBN and Weight uncertainty DBM were effective compared with the dropout method. At last, we validate the effectiveness of wssDBM in experimental section.
27#
發(fā)表于 2025-3-26 07:14:09 | 只看該作者
28#
發(fā)表于 2025-3-26 09:37:18 | 只看該作者
Anomalous Behavior Detection in Crowded Scenes Using Clustering and Spatio-Temporal Featuresy detection in an unsupervised manner. We investigate three different approaches to extracting and representing spatio-temporal features, and we demonstrate the effectiveness of our proposed feature representation on a standard benchmark dataset and a real-life video surveillance environment.
29#
發(fā)表于 2025-3-26 14:57:08 | 只看該作者
30#
發(fā)表于 2025-3-26 17:35:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-7 05:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定日县| 大港区| 灵台县| 张家川| 武清区| 富川| 嘉兴市| 乌兰县| 同仁县| 怀柔区| 岳阳县| 孟村| 安多县| 于都县| 四子王旗| 祁门县| 玛纳斯县| 镇赉县| 淳化县| 合肥市| 赤城县| 日喀则市| 大田县| 石屏县| 慈溪市| 屏东县| 和平县| 弥勒县| 龙陵县| 沙洋县| 从江县| 彭阳县| 区。| 无锡市| 绵阳市| 延边| 安国市| 将乐县| 临漳县| 绍兴市| 长子县|