找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Human Computer Interaction; 14th International C Hakimjon Zaynidinov,Madhusudan Singh,Dhananjay Sin Conference proceedings 2023

[復(fù)制鏈接]
樓主: Alacrity
31#
發(fā)表于 2025-3-26 21:42:26 | 只看該作者
32#
發(fā)表于 2025-3-27 02:56:20 | 只看該作者
Automatic Speech Recognition on the Neutral Network Based on Attention Mechanism,d neural network model based on attention mechanism, which are widely used in automatic speech recognition, have been proposed, which are taught on the basis of Uzbek and Russian speech corpuscles and the results obtained are comparatively analyzed.
33#
發(fā)表于 2025-3-27 07:02:23 | 只看該作者
Conference proceedings 2023kent, Uzbekistan, during October 20–22, 2022.?.The 47 full papers and 13 short papers included in this book were carefully reviewed and selected from 148 submissions. They were organized in topical sections as follows: Bio-inspired Computing; Cognitive computing; Human Centered AI; Intelligent Techn
34#
發(fā)表于 2025-3-27 09:51:52 | 只看該作者
35#
發(fā)表于 2025-3-27 14:22:12 | 只看該作者
,GWD: Graded Word Drop Model for?When Type Questions for?Hindi QA,he GWD preprocessed text gave improvement over non-preprocessed results in terms of both accuracy and F1-score and achieved 53.57%, 38.09%, 55.95% accuracy, and 63.21, 68.37 and 67.09 F1-score in mBERT, XLM-RoBERTa and MuRIL respectively and improved prediction times by five fold in all these models.
36#
發(fā)表于 2025-3-27 21:41:49 | 只看該作者
Masked Face Recognition Model with Explainable AI,ee whether the model has really focused on the regions of interest. Our approach showed through the generated heatmaps that difference in the data of the training models make difference in range of focus.
37#
發(fā)表于 2025-3-27 23:48:26 | 只看該作者
38#
發(fā)表于 2025-3-28 04:51:57 | 只看該作者
Uzbek Speech Synthesis Using Deep Learning Algorithms, Tacotron and the neural vocoder parallel waveGAN. The formed speech corpus with the volume of 31?h of Uzbek speech is described. The quality of the synthesized speech was evaluated using the MOS scale, according to that the intelligibility and accuracy of the synthesized speech was 4.36 points out of five.
39#
發(fā)表于 2025-3-28 07:59:11 | 只看該作者
40#
發(fā)表于 2025-3-28 12:53:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 05:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桐乡市| 加查县| 英超| 资溪县| 金秀| 崇左市| 弥勒县| 九江县| 翁牛特旗| 灵石县| 宝鸡市| 青州市| 黑山县| 靖边县| 虹口区| 奇台县| 广昌县| 韶关市| 和田市| 胶南市| 霍邱县| 中山市| 屏东市| 乐平市| 巧家县| 大厂| 铜川市| 永登县| 九龙坡区| 南和县| 勃利县| 桂阳县| 百色市| 咸丰县| 林州市| 嫩江县| 秦皇岛市| 乐陵市| 靖西县| 秭归县| 沈阳市|