找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Data Engineering and Automated Learning – IDEAL 2008; 9th International Co Colin Fyfe,Dongsup Kim,Hujun Yin Conference proceedi

[復(fù)制鏈接]
樓主: 威風(fēng)
11#
發(fā)表于 2025-3-23 10:27:08 | 只看該作者
12#
發(fā)表于 2025-3-23 15:46:04 | 只看該作者
Evolutionary Optimization of Union-Based Rule-Antecedent Fuzzy Neural Networks and Its Applications the development stage, genetic algorithm (GA) constructs a Boolean skeleton of URFNN, while gradient-based learning refines the binary connections of GA-optimized URFNN for further improvement of the performance index. A cart-pole system is considered to verify the effectiveness of the proposed method.
13#
發(fā)表于 2025-3-23 18:56:04 | 只看該作者
Improving AdaBoost Based Face Detection Using Face-Color Preferable Selective Attention faces induced by complex background such as face-like non-face area, but can enhances a face detection speed by reducing region of interests through the face-color preferable selective attention model. The experimental results show that the proposed model shows plausible performance for localizing faces in real time.
14#
發(fā)表于 2025-3-24 00:57:56 | 只看該作者
15#
發(fā)表于 2025-3-24 04:31:14 | 只看該作者
Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifoldsefel manifold, whereas existing algorithms consider additive orthogonality constraints. Experiments on several different document data sets show our orthogonal NMF algorithms perform better in a task of clustering, compared to the standard NMF and an existing orthogonal NMF.
16#
發(fā)表于 2025-3-24 09:47:26 | 只看該作者
Feature Discovery by Enhancement and Relaxation of Competitive Unitsa simple artificial data and the famous Iris problem to show how well the method can extract the main features in input patterns. Experimental results showed that the method could more explicitly extract the main features in input patterns than the conventional techniques of the SOM.
17#
發(fā)表于 2025-3-24 14:42:07 | 只看該作者
0302-9743 tificial neural networks, machine learning, evolutionary algorithms, artificial immune systems, ant algorithms, probabilistic modelling, fuzzy systems and agent978-3-540-88905-2978-3-540-88906-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
18#
發(fā)表于 2025-3-24 17:19:48 | 只看該作者
Jian Li,Bo Su,Shenghong Li,Shilin Wang,Danhong Yao
19#
發(fā)表于 2025-3-24 20:36:06 | 只看該作者
Cheng-Hong Yang,Chi-Chun Huang,Kuo-Chuan Wu,Hsin-Yun Chang
20#
發(fā)表于 2025-3-25 02:39:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 09:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延川县| 临清市| 濉溪县| 楚雄市| 望奎县| 临城县| 荔浦县| 鱼台县| 晋宁县| 平邑县| 广灵县| 托克逊县| 龙胜| 陵水| 南通市| 馆陶县| 高唐县| 定安县| 金山区| 江油市| 徐汇区| 张家界市| 镶黄旗| 青州市| 水城县| 稷山县| 启东市| 郎溪县| 兖州市| 苍溪县| 旬阳县| 阿城市| 南靖县| 霍山县| 乾安县| 成安县| 密山市| 吉安县| 呈贡县| 聂荣县| 阿拉善左旗|