找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Data Engineering and Automated Learning - IDEAL 2009; 10th International C Emilio Corchado,Hujun Yin Conference proceedings 200

[復(fù)制鏈接]
樓主: digestive-tract
51#
發(fā)表于 2025-3-30 09:03:24 | 只看該作者
52#
發(fā)表于 2025-3-30 13:11:12 | 只看該作者
A Novel Estimation of the Regularization Parameter for ,-SVMoth terms must be optimized in approximately equal conditions in the objective function, we propose to estimate . as a comparison of the new model based on maximums and the standard SVM model. The performance of our approach is shown in terms of SVM training time and test error in several regression problems from well known standard repositories.
53#
發(fā)表于 2025-3-30 19:11:41 | 只看該作者
54#
發(fā)表于 2025-3-30 20:55:22 | 只看該作者
Nearest Neighbor Classification by Relearningod is proposed. The proposed relearning method shows a higher generalization accuracy when compared to the basic kNN with distance function and other conventional learning algorithms. Experiments have been conducted on some benchmark datasets from the UCI Machine Learning Repository.
55#
發(fā)表于 2025-3-31 02:49:31 | 只看該作者
56#
發(fā)表于 2025-3-31 07:36:06 | 只看該作者
Lazy Classification Using an Optimized Instance-Based Learnerta mining API, and is available for download. Its performance, according to accuracy and speed metrics, compares relatively well with that of well-established classifiers such as nearest neighbor models or support vector machines. For this reason, the similarity classifier can become a useful instrument in a data mining practitioner’s tool set.
57#
發(fā)表于 2025-3-31 10:04:01 | 只看該作者
58#
發(fā)表于 2025-3-31 16:48:48 | 只看該作者
FeedRank: A Semantic-Based Management System of Web Feedsal and passive Web feed readers such as: providing only simple presentations of what is received, poor integration of correlated data from different sources, and overwhelming the user with large traffic of feeds that are of no or low interest to them.
59#
發(fā)表于 2025-3-31 18:45:56 | 只看該作者
60#
發(fā)表于 2025-4-1 01:40:15 | 只看該作者
SCIS: Combining Instance Selection Methods to Increase Their Effectiveness over a Wide Range of Domaof methods expected to produce the best results. This approach was evaluated over 20 databases and with six different learning paradigms. The results have been compared with those achieved by five well-known state-of-the-art methods.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-8 01:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
防城港市| 攀枝花市| 安康市| 故城县| 宁陕县| 南投市| 海盐县| 西林县| 岑巩县| 东莞市| 台州市| 喀什市| 米易县| 敖汉旗| 栾川县| 兰州市| 扎鲁特旗| 聂荣县| 宁波市| 黄龙县| 隆安县| 旬阳县| 巩留县| 莒南县| 双柏县| 大埔区| 广元市| 嵩明县| 乐都县| 饶河县| 曲阜市| 墨玉县| 光泽县| 金川县| 山阳县| 内黄县| 辽阳县| 连城县| 玉环县| 延边| 胶南市|