找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Data Engineering and Analytics; Frontiers in Intelli Suresh Chandra Satapathy,Yu-Dong Zhang,Ritanjali M Conference proceedings

[復制鏈接]
樓主: 喝水
31#
發(fā)表于 2025-3-26 23:46:33 | 只看該作者
32#
發(fā)表于 2025-3-27 02:33:03 | 只看該作者
Sentiment Analysis on Movie Review Using Deep Learning RNN Method,N algorithm instead of machine learning algorithm because machine learning algorithm works only in single layer while RNN algorithm works on multilayer that gives you better output as compared to machine learning.
33#
發(fā)表于 2025-3-27 06:22:48 | 只看該作者
Anaghashree,Sushmita Delcy Pereira,Rao B. Ashwath,Shwetha Rai,N. Gopalakrishna Kini
34#
發(fā)表于 2025-3-27 11:25:51 | 只看該作者
35#
發(fā)表于 2025-3-27 16:05:49 | 只看該作者
Potential of Robust Face Recognition from Real-Time CCTV Video Stream for Biometric Attendance Usinpressions, lighting conditions, and resolution of the image. The wellness of the recognition technique firmly depends on the accuracy of extracted features and also on the ability to deal with the low-resolution face images. The mastery to learn accurate features from raw face images makes deep conv
36#
發(fā)表于 2025-3-27 19:24:07 | 只看該作者
ATM Theft Investigation Using Convolutional Neural Network, (ATM) is common nowadays, in spite of having a surveillance camera inside an ATM as it is not fully integrated to detect crime/theft. On the other hand, we have many image processing algorithms that can help us to detect the covered faces, a person wearing a helmet and some other abnormal features.
37#
發(fā)表于 2025-3-28 01:40:36 | 只看該作者
38#
發(fā)表于 2025-3-28 04:42:23 | 只看該作者
39#
發(fā)表于 2025-3-28 08:22:18 | 只看該作者
40#
發(fā)表于 2025-3-28 12:27:24 | 只看該作者
Two-Way Face Scrutinizing System for Elimination of Proxy Attendances Using Deep Learning,rs, and also has a major impact in facilitating new cutting-edge technologies and innovations. TheInternet of Things, image processing and machine learning are evolving day by day. Many systems have completely changed due to this evolvement to achieve more accurate results. The attendance recording
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 03:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
昌黎县| 永登县| 罗田县| 宝清县| 上高县| 牡丹江市| 安化县| 临邑县| 松阳县| 双流县| 仁寿县| 南召县| 九寨沟县| 白玉县| 郓城县| 阿拉善左旗| 腾冲县| 萨迦县| 泰安市| 龙川县| 河间市| 江安县| 江都市| 玉山县| 正宁县| 上犹县| 怀宁县| 洛川县| 建阳市| 那曲县| 巴彦淖尔市| 布拖县| 新密市| 阳谷县| 绥芬河市| 玉田县| 扎囊县| 新安县| 甘洛县| 乐昌市| 巫山县|