找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Computing Theories and Application; 15th International C De-Shuang Huang,Vitoantonio Bevilacqua,Prashan Pre Conference proceedi

[復(fù)制鏈接]
樓主: 夾子
11#
發(fā)表于 2025-3-23 13:17:54 | 只看該作者
12#
發(fā)表于 2025-3-23 14:45:40 | 只看該作者
13#
發(fā)表于 2025-3-23 18:10:16 | 只看該作者
14#
發(fā)表于 2025-3-23 22:15:26 | 只看該作者
A Deep Learning Model for Multi-label Classification Using Capsule Networks,s is much larger than the number of single-labeled images, which means that the study of multi-label image classification is more important. Most of the published network for multi-label image classification uses a CNN with a sigmoid layer, which is different from the single-label classification net
15#
發(fā)表于 2025-3-24 05:16:31 | 只看該作者
16#
發(fā)表于 2025-3-24 10:06:15 | 只看該作者
Combining LSTM Network Model and Wavelet Transform for Predicting Self-interacting Proteins,tention to the development of approaches for the prediction of protein interactions and functions from sequences. In addition, elucidation of the self-interacting proteins (SIPs) play significant roles in the understanding of cellular process and cell functions. This work explored the use of deep le
17#
發(fā)表于 2025-3-24 11:26:04 | 只看該作者
Coarse-to-Fine Supervised Descent Method for Face Alignment,res a large amount of training samples to learn the descent directions and get the corresponding regressors. Then in the test phase, it uses the corresponding regressors to estimate the descent directions and locate the facial landmarks. However, when the facial expression or direction changes too m
18#
發(fā)表于 2025-3-24 16:56:52 | 只看該作者
Prediction of Chemical Oxygen Demand in Sewage Based on Support Vector Machine and Neural Network,d model based on support vector machine and neural network is proposed to predict effluent COD. It can reduce the influence of local optimum on the global scope so as to improve the accuracy of prediction. Firstly, the sample data are divided into two categories by support vector machine. Then the B
19#
發(fā)表于 2025-3-24 22:22:07 | 只看該作者
Relaxed 2-D Principal Component Analysis by Lp Norm for Face Recognition,, the R2DPCA utilizes the label information (if known) of training samples to calculate a relaxation vector and presents a weight to each subset of training data. A new relaxed scatter matrix is defined and the computed projection axes are able to increase the accuracy of face recognition. The optim
20#
發(fā)表于 2025-3-25 03:09:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 19:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆昌县| 靖安县| 收藏| 宣城市| 枣阳市| 随州市| 玉山县| 衡东县| 临武县| 灵宝市| 闽清县| 康马县| 化州市| 樟树市| 峨眉山市| 西宁市| 汝州市| 滨州市| 永昌县| 抚顺市| 哈巴河县| 称多县| 烟台市| 山丹县| 宝应县| 平江县| 舒兰市| 大邑县| 乌拉特后旗| 玉环县| 岗巴县| 定州市| 抚松县| 汉源县| 特克斯县| 南宫市| 昆山市| 贵溪市| 凉山| 呼图壁县| 博野县|