找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Computing Theories and Application; 14th International C De-Shuang Huang,Kang-Hyun Jo,Xiao-Long Zhang Conference proceedings 20

[復(fù)制鏈接]
樓主: TUMOR
31#
發(fā)表于 2025-3-26 22:21:04 | 只看該作者
32#
發(fā)表于 2025-3-27 03:51:02 | 只看該作者
33#
發(fā)表于 2025-3-27 06:43:07 | 只看該作者
Fault Diagnosis and Control of a KYB MMP4 Electro-Hydraulic Actuator for LDVT Sensor Fault,cting and isolating the sensor fault signal is designed using the unknown input observer (UIO). In the sensor fault case, the fault detection and isolation (FDI) generates the feedback signal to the PID controller to drive the position of the actuator. The simulation and experimentations are performed to verify the performance of the FTC.
34#
發(fā)表于 2025-3-27 10:46:31 | 只看該作者
35#
發(fā)表于 2025-3-27 14:11:21 | 只看該作者
36#
發(fā)表于 2025-3-27 20:55:57 | 只看該作者
An Enhanced HAL-Based Pseudo Relevance Feedback Model in Clinical Decision Support Retrieval,en, we propose three normalization methods to incorporate proximity information. Experimental results on 2016 TREC Clinical Support Medicine collections show that our proposed models are effective and generally superior to the state-of-the-art relevance feedback models.
37#
發(fā)表于 2025-3-28 01:40:46 | 只看該作者
38#
發(fā)表于 2025-3-28 05:24:50 | 只看該作者
A Deep Reinforcement Learning Method for Self-driving,ributions, the sparse rewards is divided into three groups. The experience information for different rewards is fully utilized and the local optimum problem in the network training process is avoided. By comparing with the traditional method, simulation results show that the proposed method significantly reduces the training time of network.
39#
發(fā)表于 2025-3-28 07:04:29 | 只看該作者
A Mask R-CNN Model with Improved Region Proposal Network for Medical Ultrasound Image,he further segmentation. Therefore, this paper improves the selection criteria of the anchor in the RPN layer, making the improved RPN layer more suitable for image segmentation tasks. Finally, the experimental results show that the improved model can achieve higher segmentation accuracy with the appropriate parameters selected.
40#
發(fā)表于 2025-3-28 13:25:43 | 只看該作者
Breast Cancer Medical Image Analysis Based on Transfer Learning Model,nal layers and one max pooling layer before final fully connected layer. The experimental results have shown that this strategy is suitable for the problem in this paper. The paper indicates that the transfer learning model is an effective method with small-scale data, and it can be combined with deep learning algorithms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 01:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
本溪市| 余干县| 莫力| 高邮市| 安乡县| 民勤县| 高密市| 湘潭市| 宜阳县| 宁化县| 西青区| 石首市| 巴林左旗| 临泽县| 铜川市| 嘉黎县| 巴楚县| 常州市| 博爱县| 宣化县| 防城港市| 固始县| 安塞县| 凌云县| 天峨县| 深水埗区| 平度市| 左贡县| 连江县| 仁布县| 饶平县| 利辛县| 罗平县| 福海县| 乳源| 靖边县| 勃利县| 泰州市| 新建县| 金溪县| 双桥区|