找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Computing; Proceedings of the 2 Kohei Arai Conference proceedings 2024 The Editor(s) (if applicable) and The Author(s), under e

[復(fù)制鏈接]
樓主: PLY
11#
發(fā)表于 2025-3-23 10:36:56 | 只看該作者
Challenges of Deepfakes,mocratic processes. This paper delves into the multifaceted challenges posed by deepfakes, emphasizing their potential to mislead, manipulate, and disrupt various domains, including politics, national security, and public discourse. The study highlights the complexity of detecting deepfakes, which a
12#
發(fā)表于 2025-3-23 15:59:24 | 只看該作者
13#
發(fā)表于 2025-3-23 21:21:39 | 只看該作者
Predicting Suicide Cases Using Deep Neural Network,, it is imperative to implement effective suicide prevention strategies. In this context, deep neural network (DNN) algorithms have gained prominence and are increasingly applied across various healthcare domains. In our research, we examined the efficacy of employing DNNs for predicting suicide att
14#
發(fā)表于 2025-3-24 00:54:46 | 只看該作者
15#
發(fā)表于 2025-3-24 04:43:24 | 只看該作者
16#
發(fā)表于 2025-3-24 10:14:31 | 只看該作者
,Deep Feature Discriminability as?a?Diagnostic Measure of?Overfitting in?CNN Models,anced Deep Learning architectures. In this study, we present a novel methodology that identifies and analyzes model overfitting by leveraging unsupervised clustering of the features extracted by CNNs. Our research demonstrates that overfitted models exhibit inadequate class discriminability within t
17#
發(fā)表于 2025-3-24 14:19:36 | 只看該作者
,A Meta-VAE for?Multi-component Industrial Systems Generation,sign options, providing a cheaper and faster alternative to the trial and failure approaches. Thanks to the flexibility they offer, Deep Generative Models are gaining popularity amongst Generative Design technologies. However, developing and evaluating these models can be challenging. A notable gap
18#
發(fā)表于 2025-3-24 16:20:06 | 只看該作者
,Analysis of?the?Computational Complexity of?Backpropagation and?Neuroevolution,based on stochastic gradient descent, where a network of neurons alter their weights based on an error signal passed back from the output. The second algorithm, called neuroevolution, is based on the genetic algorithm. In it, many weight sets are ranked based on how well the network solves the probl
19#
發(fā)表于 2025-3-24 20:25:51 | 只看該作者
,Indoor Obstacle Avoidance System Design and?Evaluation Using Deep Learning and?SLAM-Based Approacheates the fusion of 2D LiDAR-based Simultaneous Localization and Mapping (SLAM) with a Rapidly Exploring Random Trees (RRT) algorithm for effective path planning. Furthermore, we propose an innovative and pioneering approach for obstacle avoidance based on deep learning. The deep learning model is tr
20#
發(fā)表于 2025-3-25 00:25:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 18:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新竹市| 临潭县| 修文县| 长治县| 偏关县| 建始县| 当雄县| 蒙城县| 裕民县| 南平市| 五家渠市| 禹州市| 海晏县| 喀喇| 长武县| 尤溪县| 麟游县| 宁武县| 厦门市| 彭山县| 崇礼县| 灌南县| 华安县| 岳阳县| 红原县| 曲麻莱县| 余江县| 三亚市| 大姚县| 马边| 读书| 昌黎县| 无锡市| 峡江县| 洛川县| 无为县| 江山市| 临颍县| 黑龙江省| 迭部县| 华容县|