找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Computer Mathematics; 12th International C Cezary Kaliszyk,Edwin Brady,Claudio Sacerdoti Coen Conference proceedings 2019 Sprin

[復(fù)制鏈接]
樓主: 頌歌
11#
發(fā)表于 2025-3-23 11:35:14 | 只看該作者
12#
發(fā)表于 2025-3-23 16:19:32 | 只看該作者
,Beginners’ Quest to Formalize Mathematics: A Feasibility Study in Isabelle, by an undergraduate research group at Jacobs University Bremen. We argue that, as demonstrated by our example, proof assistants are feasible for beginners to formalize mathematics. With the aim to make the field more accessible, we also survey hurdles that arise when learning an interactive theorem
13#
發(fā)表于 2025-3-23 18:32:03 | 只看該作者
14#
發(fā)表于 2025-3-23 22:24:41 | 只看該作者
A Tale of Two Set Theories,ry of Egal. We show how certain higher-order terms and propositions in Egal have equivalent first-order presentations. We then prove Tarski’s Axiom A (an axiom in Mizar) in Egal and construct a Grothendieck Universe operator (a primitive with axioms in Egal) in Mizar.
15#
發(fā)表于 2025-3-24 04:40:49 | 只看該作者
16#
發(fā)表于 2025-3-24 07:57:22 | 只看該作者
17#
發(fā)表于 2025-3-24 14:00:30 | 只看該作者
18#
發(fā)表于 2025-3-24 18:28:42 | 只看該作者
Towards Specifying Symbolic Computation,rithms are commonplace in computer algebra systems, they can be surprisingly difficult to specify in a formal logic since they involve an interplay of syntax and semantics. In this paper we discuss several examples of syntax-based mathematical algorithms, and we show how to specify them in a formal
19#
發(fā)表于 2025-3-24 20:36:28 | 只看該作者
Lemma Discovery for Induction,on. In this paper we survey various techniques for automating the discovery of such lemmas, including both top-down techniques attempting to generate a lemma from an ongoing proof attempt, as well as bottom-up theory exploration techniques trying to construct interesting lemmas about available funct
20#
發(fā)表于 2025-3-25 00:58:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 09:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
栖霞市| 沂南县| 尼玛县| 巴青县| 涡阳县| 东方市| 邹平县| 乃东县| 枝江市| 天镇县| 太原市| 德阳市| 迁西县| 永川市| 成安县| 武冈市| 奇台县| 绿春县| 宿迁市| 贡嘎县| 峨山| 大冶市| 新和县| 大埔县| 翁牛特旗| 瑞丽市| 民和| 会东县| 嵊州市| 行唐县| 鄂尔多斯市| 绍兴县| 望都县| 德庆县| 许昌市| 武城县| 蒙山县| 沾益县| 麟游县| 波密县| 桓仁|