找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligence Science and Big Data Engineering. Visual Data Engineering; 9th International Co Zhen Cui,Jinshan Pan,Jian Yang Conference proc

[復(fù)制鏈接]
樓主: Coarse
11#
發(fā)表于 2025-3-23 13:10:55 | 只看該作者
12#
發(fā)表于 2025-3-23 16:00:23 | 只看該作者
Robust Object Tracking Based on Multi-granularity Sparse Representation,with different sizes. At last, in order to reduce tracking model’s drift phenomenon due to model update, an adaptive update mechanism is designed by combining occlusion ratio and incremental HOG feature. Both qualitative and quantitative evaluations have been conducted on OTB-2013 datasets to demons
13#
發(fā)表于 2025-3-23 18:11:56 | 只看該作者
Real-Time Visual Object Tracking Based on Reinforcement Learning with Twin Delayed Deep Deterministodel by using two Critic networks to jointly predict the bounding box confidence, and to obtain the smaller predicted value as the label to update the network parameters, thereby rendering the Critic network to avoid excessive estimation bias, accelerate the convergence of the loss function, and obt
14#
發(fā)表于 2025-3-23 23:07:53 | 只看該作者
Efficiently Handling Scale Variation for Pedestrian Detection, and only introduces very few additional parameters. We have conducted experiments on the CityPersons, Caltech and ETH datasets and achieved significant improvements to the baseline method, especially on the small scale subset. In particular, on the CityPersons and ETH datasets, our method surpasses
15#
發(fā)表于 2025-3-24 05:34:46 | 只看該作者
16#
發(fā)表于 2025-3-24 06:30:16 | 只看該作者
17#
發(fā)表于 2025-3-24 11:48:45 | 只看該作者
Soft Transferring and Progressive Learning for Human Action Recognition,to learn from the supervisors, which have been trained on large-scale datasets. We fine-tune supervision model and train our new model on UCF101 and HMDB51 datasets, experiment results demonstrate the feasibility of soft transferring method, extend transfer learning to a broader sense, and show the
18#
發(fā)表于 2025-3-24 16:17:33 | 只看該作者
19#
發(fā)表于 2025-3-24 22:45:51 | 只看該作者
20#
發(fā)表于 2025-3-24 23:25:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-7 21:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
米泉市| 天全县| 丰顺县| 绥德县| 恩平市| 郧西县| 尉氏县| 黄平县| 镇沅| 万盛区| 龙川县| 永和县| 香港 | 开封市| 洛宁县| 将乐县| 怀仁县| 永清县| 铜山县| 安陆市| 通城县| 武邑县| 绵竹市| 巴彦县| 阳东县| 富川| 昌乐县| 定西市| 民县| 克拉玛依市| 石景山区| 五家渠市| 从化市| 浑源县| 上饶县| 宾川县| 图们市| 林芝县| 五大连池市| 莱芜市| 黔西县|