找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integration of Constraint Programming, Artificial Intelligence, and Operations Research; 20th International C Andre A. Cire Conference proc

[復(fù)制鏈接]
樓主: 使委屈
41#
發(fā)表于 2025-3-28 17:23:50 | 只看該作者
,Online Learning for?Scheduling MIP Heuristics, attributed to heuristics. Since their behavior is highly instance-dependent, relying on hard-coded rules derived from empirical testing on a large heterogeneous corpora of benchmark instances might lead to sub-optimal performance. In this work, we propose an online learning approach that adapts the
42#
發(fā)表于 2025-3-28 22:39:28 | 只看該作者
,Contextual Robust Optimisation with?Uncertainty Quantification,ity of optimisation to parameter estimation. This is achieved by integrating uncertainty quantification (UQ) methods for supervised learning into the ambiguity sets for distributionally robust optimisation (DRO). The pipelines leverage learning to produce contextual/conditional ambiguity sets from s
43#
發(fā)表于 2025-3-29 00:30:41 | 只看該作者
44#
發(fā)表于 2025-3-29 07:08:02 | 只看該作者
45#
發(fā)表于 2025-3-29 11:14:21 | 只看該作者
,ZDD-Based Algorithmic Framework for?Solving Shortest Reconfiguration Problems,ams (ZDDs), a data structure for representing families of sets. In general, a reconfiguration problem checks if there is a step-by-step transformation between two given feasible solutions (e.g., independent sets of an input graph) of a fixed search problem, such that all intermediate results are als
46#
發(fā)表于 2025-3-29 11:30:00 | 只看該作者
,Neural Networks for?Local Search and?Crossover in?Vehicle Routing: A Possible Overkill?,achine learning algorithms. In this study, we investigate the use of predictions from graph neural networks (GNNs) in the form of heatmaps to improve the Hybrid Genetic Search (HGS), a state-of-the-art algorithm for the Capacitated Vehicle Routing Problem (CVRP). The crossover and local-search compo
47#
發(fā)表于 2025-3-29 16:19:42 | 只看該作者
48#
發(fā)表于 2025-3-29 19:44:26 | 只看該作者
49#
發(fā)表于 2025-3-30 01:26:45 | 只看該作者
50#
發(fā)表于 2025-3-30 07:57:46 | 只看該作者
,Scalable and?Near-Optimal ,-Tube Clusterwise Regression, distinct regression trends. Due to the inherent difficulty in simultaneously optimizing clustering and regression objectives, it is not surprising that existing optimal CLR approaches do not scale beyond 100 s of data points. In an effort to provide more scalable and optimal CLR methods, we propose
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 15:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安图县| 庄河市| 屯昌县| 固安县| 景洪市| 工布江达县| 东乌珠穆沁旗| 云龙县| 柳河县| 弥勒县| 安宁市| 黑水县| 揭阳市| 昭觉县| 商城县| 突泉县| 灌阳县| 永寿县| 海阳市| 黑龙江省| 大同市| 福海县| 石楼县| 乳山市| 武胜县| 山阴县| 阿鲁科尔沁旗| 灵寿县| 鹤山市| 南宁市| 钟山县| 攀枝花市| 阿拉善左旗| 安平县| 盐亭县| 银川市| 紫金县| 新泰市| 威海市| 囊谦县| 高雄县|