找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integration of Constraint Programming, Artificial Intelligence, and Operations Research; 20th International C Andre A. Cire Conference proc

[復(fù)制鏈接]
樓主: 使委屈
41#
發(fā)表于 2025-3-28 17:23:50 | 只看該作者
,Online Learning for?Scheduling MIP Heuristics, attributed to heuristics. Since their behavior is highly instance-dependent, relying on hard-coded rules derived from empirical testing on a large heterogeneous corpora of benchmark instances might lead to sub-optimal performance. In this work, we propose an online learning approach that adapts the
42#
發(fā)表于 2025-3-28 22:39:28 | 只看該作者
,Contextual Robust Optimisation with?Uncertainty Quantification,ity of optimisation to parameter estimation. This is achieved by integrating uncertainty quantification (UQ) methods for supervised learning into the ambiguity sets for distributionally robust optimisation (DRO). The pipelines leverage learning to produce contextual/conditional ambiguity sets from s
43#
發(fā)表于 2025-3-29 00:30:41 | 只看該作者
44#
發(fā)表于 2025-3-29 07:08:02 | 只看該作者
45#
發(fā)表于 2025-3-29 11:14:21 | 只看該作者
,ZDD-Based Algorithmic Framework for?Solving Shortest Reconfiguration Problems,ams (ZDDs), a data structure for representing families of sets. In general, a reconfiguration problem checks if there is a step-by-step transformation between two given feasible solutions (e.g., independent sets of an input graph) of a fixed search problem, such that all intermediate results are als
46#
發(fā)表于 2025-3-29 11:30:00 | 只看該作者
,Neural Networks for?Local Search and?Crossover in?Vehicle Routing: A Possible Overkill?,achine learning algorithms. In this study, we investigate the use of predictions from graph neural networks (GNNs) in the form of heatmaps to improve the Hybrid Genetic Search (HGS), a state-of-the-art algorithm for the Capacitated Vehicle Routing Problem (CVRP). The crossover and local-search compo
47#
發(fā)表于 2025-3-29 16:19:42 | 只看該作者
48#
發(fā)表于 2025-3-29 19:44:26 | 只看該作者
49#
發(fā)表于 2025-3-30 01:26:45 | 只看該作者
50#
發(fā)表于 2025-3-30 07:57:46 | 只看該作者
,Scalable and?Near-Optimal ,-Tube Clusterwise Regression, distinct regression trends. Due to the inherent difficulty in simultaneously optimizing clustering and regression objectives, it is not surprising that existing optimal CLR approaches do not scale beyond 100 s of data points. In an effort to provide more scalable and optimal CLR methods, we propose
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 22:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉林省| 治多县| 岑溪市| 昂仁县| 衡东县| 南皮县| 盐山县| 安庆市| 蕲春县| 明水县| 延安市| 宜黄县| 合作市| 安福县| 灵寿县| 大足县| 多伦县| 东安县| 玉田县| 八宿县| 四子王旗| 庆城县| 巴彦县| 大连市| 全州县| 中西区| 句容市| 常宁市| 家居| 浙江省| 南安市| 三亚市| 杭锦后旗| 涡阳县| 济源市| 桃园市| 北辰区| 柏乡县| 侯马市| 拜城县| 庆阳市|