找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Transforms in Geophysics; Michael S. Zhdanov Book 1988 Springer-Verlag Berlin Heidelberg 1988 Fundament.Riemann surface.distribut

[復(fù)制鏈接]
樓主: 斷頭臺
11#
發(fā)表于 2025-3-23 11:43:09 | 只看該作者
Three-Dimensional Cauchy-Type Integral Analogstype integral. But two-dimensional (plane) fields can serve just as an approximate model of actual geophysical fields dependent on three space coordinates. In view of this, an extremely important problem of theoretical geophysics is how to extend the results of a two-dimensional theory to a three-di
12#
發(fā)表于 2025-3-23 17:25:21 | 只看該作者
13#
發(fā)表于 2025-3-23 20:57:15 | 只看該作者
14#
發(fā)表于 2025-3-23 22:43:33 | 只看該作者
15#
發(fā)表于 2025-3-24 04:26:49 | 只看該作者
Analytical Continuation of the Electromagnetic Fielding analytical continuation of functions of a complex variable are outlined in Chap. 4, while those for an analytical vector field are treated in Sect. 7.1. We will apply these principles to the electromagnetic field. For the sake of simplicity, we will confine ourselves to a monochromatic field, al
16#
發(fā)表于 2025-3-24 09:22:56 | 只看該作者
17#
發(fā)表于 2025-3-24 12:56:56 | 只看該作者
Kirchhoff-Type Integralsmic prospecting and they yield extremely significant information about the deep structure of the Earth which could not be gained using other geophysical methods. In view of this, the problem of extending the body of Cauchy-type integrals to wave fields is of critical value in theoretical geophysics.
18#
發(fā)表于 2025-3-24 16:06:35 | 只看該作者
Continuation and Migration of Elastic Wave Fieldseismoholography (Hemon 1971; Timoshin 1972, 1978; Petrashen and Nakhamkin 1973; Vasiliev 1975; Clearbout 1976, 1985; Berkhout 1980, 1984). Behind these methods is the idea of time reversal of an elastic oscillation field and continuation of the reversed wave field toward sources. For instance, in di
19#
發(fā)表于 2025-3-24 21:26:51 | 只看該作者
20#
發(fā)表于 2025-3-25 00:03:40 | 只看該作者
978-3-642-72630-9Springer-Verlag Berlin Heidelberg 1988
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 16:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松溪县| 南陵县| 八宿县| 石狮市| 晴隆县| 新津县| 乐清市| 贺兰县| 娄底市| 旌德县| 视频| 太原市| 九龙城区| 扶绥县| 化德县| 黄龙县| 江都市| 洪洞县| 榆中县| 浙江省| 宜川县| 麟游县| 巴彦淖尔市| 平邑县| 江口县| 渭源县| 衢州市| 朔州市| 陆丰市| 理塘县| 石林| 邢台县| 柳州市| 富源县| 揭东县| 得荣县| 合江县| 确山县| 天柱县| 汕头市| 台前县|