找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Methods in Science and Engineering; Computational and An Christian Constanda,Paul J. Harris Book 2011 Springer Science+Business Me

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 17:09:13 | 只看該作者
42#
發(fā)表于 2025-3-28 19:37:40 | 只看該作者
43#
發(fā)表于 2025-3-29 01:03:17 | 只看該作者
44#
發(fā)表于 2025-3-29 06:42:02 | 只看該作者
Thermoelastic Plates with Arc-Shaped Cracks,al properties and solution of the theory proposed in (Schiavone and Tait .), when the plate is weakened by an arc-shaped crack. The corresponding results in the absence of the temperature factor can be found in (Chudinovich and Constanda .), (Chudinovich and Constanda .), and (Chudinovich and Constanda .).
45#
發(fā)表于 2025-3-29 10:01:32 | 只看該作者
46#
發(fā)表于 2025-3-29 13:11:16 | 只看該作者
,Analysis of Some Localized Boundary–Domain Integral Equations for Transmission Problems with Variab main results established in the paper are the LBDIE equivalence to the original transmission problems and the invertibility of the corresponding localized boundary-domain integral operators in corresponding Sobolev spaces function spaces.
47#
發(fā)表于 2025-3-29 18:49:16 | 只看該作者
,Analysis of Segregated Boundary–Domain Integral Equations for Mixed Variable-Coefficient BVPs in Exhe invertibility of the corresponding boundary–domain integral operators are proved in weighted Sobolev spaces suitable for exterior domains. This extends the results obtained by the authors for interior domains in non-weighted Sobolev spaces.
48#
發(fā)表于 2025-3-29 22:31:20 | 只看該作者
49#
發(fā)表于 2025-3-30 02:18:15 | 只看該作者
diverse group of well-established scientists Applicable to a.An enormous array of problems encountered by scientists and engineers?are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. A
50#
發(fā)表于 2025-3-30 04:47:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
顺义区| 花莲县| 柞水县| 平山县| 巴彦县| 和静县| 澄江县| 大新县| 资兴市| 浦县| 霸州市| 娄烦县| 苗栗市| 大方县| 崇义县| 西丰县| 麻江县| 平昌县| 汾阳市| 教育| 改则县| 射阳县| 黎平县| 武汉市| 澎湖县| 沧州市| 中山市| 弥渡县| 普陀区| 京山县| 银川市| 光泽县| 思茅市| 长海县| 镇平县| 雷州市| 独山县| 滦平县| 金华市| 寿阳县| 荣成市|