找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Methods in Science and Engineering; Theoretical and Prac C. Constanda,Z. Nashed,D. Rollins Book 2006 Birkh?user Boston 2006 Bounda

[復(fù)制鏈接]
樓主: intern
61#
發(fā)表于 2025-4-1 05:15:14 | 只看該作者
http://image.papertrans.cn/i/image/468319.jpg
62#
發(fā)表于 2025-4-1 06:42:20 | 只看該作者
63#
發(fā)表于 2025-4-1 11:56:38 | 只看該作者
Zonal, Spectral Solutions for the Navier-Stokes Layer and Their Aerodynamical Applications,This hybrid analytic-numerical method is more accurate and needs less computer time than full-numerical methods because it needs no grid generation, the derivatives of all parameters can be easily and exactly computed, and the NSL’s PDEs are satisfied exactly (at an arbitrary number . of chosen points).
64#
發(fā)表于 2025-4-1 17:07:24 | 只看該作者
https://doi.org/10.1007/0-8176-4450-4Boundary value problem; Integral equation; Numerical integration; Operator; Potential; Simulation; Wavelet
65#
發(fā)表于 2025-4-1 19:30:36 | 只看該作者
Book 2006 differential, integral, and integro-differential equations. An essential step in such investigations is the solution of these types of equations, which sometimes can be performed analytically, while at other times only numerically. This edited, self-contained volume presents a series of state-of-th
66#
發(fā)表于 2025-4-2 00:32:55 | 只看該作者
A Weakly Singular Boundary Integral Formulation of the External Helmholtz Problem Valid for All Wavtroducing any volume integrals. This new formulation allows a much wider class of basis functions to be considered. The numerical results show that the higher-order piecewise polynomials considered here give considerably more accurate results.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 21:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长寿区| 会宁县| 济宁市| 崇信县| 健康| 加查县| 阳新县| 开远市| 宣武区| 岐山县| 奇台县| 蓝田县| 合川市| 铁力市| 南投市| 仁怀市| 南丹县| 高邮市| 阿合奇县| 双辽市| 禄劝| 元阳县| 洪洞县| 靖边县| 五寨县| 内乡县| 新营市| 霍林郭勒市| 宁河县| 威海市| 翁牛特旗| 安康市| 黔南| 玉田县| 连云港市| 哈巴河县| 栖霞市| 台山市| 玉溪市| 富民县| 阿拉尔市|