找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integer Programming and Combinatorial Optimization; 16th International C Michel Goemans,José Correa Conference proceedings 2013 Springer-Ve

[復(fù)制鏈接]
樓主: 貪污
11#
發(fā)表于 2025-3-23 10:30:21 | 只看該作者
12#
發(fā)表于 2025-3-23 15:08:22 | 只看該作者
13#
發(fā)表于 2025-3-23 20:28:42 | 只看該作者
14#
發(fā)表于 2025-3-24 02:16:39 | 只看該作者
15#
發(fā)表于 2025-3-24 03:47:11 | 只看該作者
16#
發(fā)表于 2025-3-24 09:52:56 | 只看該作者
Blocking Optimal Arborescences, In this paper we show that the following special case is solvable in polynomial time: given a digraph .?=?(.,.) with a designated root node .?∈?. and arc-costs .:.?→??, find a minimum cardinality subset . of the arc set . such that . intersects every minimum .-cost .-arborescence. The algorithm we
17#
發(fā)表于 2025-3-24 12:01:01 | 只看該作者
18#
發(fā)表于 2025-3-24 17:44:08 | 只看該作者
A Complexity and Approximability Study of the Bilevel Knapsack Problem, weight and profit coefficients in the knapsack problem are encoded in unary, then two of the bilevel variants are solvable in polynomial time, whereas the third is NP-complete. Furthermore we design a polynomial time approximation scheme for this third variant, whereas the other two variants cannot
19#
發(fā)表于 2025-3-24 22:53:22 | 只看該作者
Matroid and Knapsack Center Problems,vertex to its closest center is minimized. In this paper, we consider two important generalizations of .-center, the matroid center problem and the knapsack center problem. Both problems are motivated by recent content distribution network applications. Our contributions can be summarized as follows
20#
發(fā)表于 2025-3-25 00:04:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云南省| 大足县| 赞皇县| 鸡东县| 赤城县| 河津市| 鄂托克旗| 奉化市| 彭水| 娱乐| 临邑县| 莱芜市| 台州市| 蒲江县| 平潭县| 天水市| 兴山县| 沿河| 保定市| 湖口县| 长子县| 开封市| 合阳县| 东乡县| 惠州市| 阿荣旗| 广州市| 稷山县| 泽州县| 灵武市| 广宗县| 化隆| 永城市| 临洮县| 错那县| 张家口市| 南部县| 台江县| 黄大仙区| 彰化县| 山阳县|