找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Instantons and Four-Manifolds; Daniel S. Freed,Karen K. Uhlenbeck Book 19841st edition Springer-Verlag New York Inc. 1984 Manifold.Manifol

[復(fù)制鏈接]
查看: 34151|回復(fù): 46
樓主
發(fā)表于 2025-3-21 16:10:39 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Instantons and Four-Manifolds
編輯Daniel S. Freed,Karen K. Uhlenbeck
視頻videohttp://file.papertrans.cn/468/467945/467945.mp4
叢書名稱Mathematical Sciences Research Institute Publications
圖書封面Titlebook: Instantons and Four-Manifolds;  Daniel S. Freed,Karen K. Uhlenbeck Book 19841st edition Springer-Verlag New York Inc. 1984 Manifold.Manifol
描述This book is the outcome of a seminar organized by Michael Freedman and Karen Uhlenbeck (the senior author) at the Mathematical Sciences Research Institute in Berkeley during its first few months of existence. Dan Freed (the junior author) was originally appointed as notetaker. The express purpose of the seminar was to go through a proof of Simon Donaldson‘s Theorem, which had been announced the previous spring. Donaldson proved the nonsmoothability of certain topological four-manifolds; a year earlier Freedman had constructed these manifolds as part of his solution to the four dimensional ; Poincare conjecture. The spectacular application of Donaldson‘s and Freedman‘s theorems to the existence of fake 1R4,s made headlines (insofar as mathematics ever makes headlines). Moreover, Donaldson proved his theorem in topology by studying the solution space of equations the Yang-Mills equations which come from ultra-modern physics. The philosophical implications are unavoidable: we mathematicians need physics! The seminar was initially very well attended. Unfortunately, we found after three months that we had covered most of the published material, but had made little real progress towards
出版日期Book 19841st edition
關(guān)鍵詞Manifold; Manifolds; Topology; differential equation; equation; mathematics; proof; theorem
版次1
doihttps://doi.org/10.1007/978-1-4684-0258-2
isbn_ebook978-1-4684-0258-2Series ISSN 0940-4740
issn_series 0940-4740
copyrightSpringer-Verlag New York Inc. 1984
The information of publication is updating

書目名稱Instantons and Four-Manifolds影響因子(影響力)




書目名稱Instantons and Four-Manifolds影響因子(影響力)學(xué)科排名




書目名稱Instantons and Four-Manifolds網(wǎng)絡(luò)公開度




書目名稱Instantons and Four-Manifolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Instantons and Four-Manifolds被引頻次




書目名稱Instantons and Four-Manifolds被引頻次學(xué)科排名




書目名稱Instantons and Four-Manifolds年度引用




書目名稱Instantons and Four-Manifolds年度引用學(xué)科排名




書目名稱Instantons and Four-Manifolds讀者反饋




書目名稱Instantons and Four-Manifolds讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:44:15 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:13:25 | 只看該作者
Compactness,The invariance of signature under oriented cobordism, a crucial ingredient in Donaldson’s Theorem, depends on the compactness of the underlying manifolds. In this chapter we prove that ., the cobordism M ~ ?.??. is compact.
地板
發(fā)表于 2025-3-22 04:33:36 | 只看該作者
The Collar Theorem,We complete the proof of Donaldson’s Theorem in this chapter by showing that for λ sufficiently small, . is diffeomorphic to (0,λ) × M. Recall from (8.30) that for λ ≤ λ. there is a well-defined smooth map
5#
發(fā)表于 2025-3-22 12:39:25 | 只看該作者
6#
發(fā)表于 2025-3-22 14:45:38 | 只看該作者
Springer-Verlag New York Inc. 1984
7#
發(fā)表于 2025-3-22 20:07:45 | 只看該作者
Instantons and Four-Manifolds978-1-4684-0258-2Series ISSN 0940-4740
8#
發(fā)表于 2025-3-23 00:35:44 | 只看該作者
,Cones on ??2, points {p.,p.,...,p.} ? . corresponding to reducible connections. We show that after a small perturbation of ?, made either by hand or through a perturbation of the metric, a neighborhood of each singular point is homeomorphic to an open cone on ??..
9#
發(fā)表于 2025-3-23 03:59:38 | 只看該作者
10#
發(fā)表于 2025-3-23 05:41:44 | 只看該作者
https://doi.org/10.1007/978-1-4684-0258-2Manifold; Manifolds; Topology; differential equation; equation; mathematics; proof; theorem
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 17:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
子长县| 福安市| 图们市| 建阳市| 共和县| 云和县| 同心县| 云和县| 河曲县| 喀喇| 荆门市| 饶平县| 土默特右旗| 台山市| 安徽省| 安龙县| 英超| 常山县| 甘谷县| 明光市| 江安县| 天水市| 文安县| 南皮县| 曲靖市| 孟州市| 石嘴山市| 温州市| 义乌市| 亳州市| 新化县| 滦南县| 彰化市| 象山县| 兴业县| 平顶山市| 新晃| 靖远县| 嘉黎县| 凭祥市| 南川市|