找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Innovative Computing; Proceedings of the 5 Yan Pei,Jia-Wei Chang,Jason C. Hung Conference proceedings 2022 The Editor(s) (if applicable) an

[復制鏈接]
樓主: nourish
31#
發(fā)表于 2025-3-26 23:44:48 | 只看該作者
Analysis for Sequential Frame with Facial Emotion Recognition Based on CNN and LSTMal network (CNN) and long short-term memory (LSTM) are combined. We extract sequential images of facial expressions from the video and input them into the CNN model individually. To solve the problem of insufficient training data, the model learns emotion-related knowledge by transfer learning on th
32#
發(fā)表于 2025-3-27 04:53:15 | 只看該作者
33#
發(fā)表于 2025-3-27 08:30:41 | 只看該作者
34#
發(fā)表于 2025-3-27 10:42:02 | 只看該作者
A Deep Learning-Based Approach for?Mammographic Architectural Distortion Classificationams among the masses and microcalcification. Physically identifying architectural distortion for radiologists is problematic because of its subtle appearance on the dense breast. Automatic early identification of breast cancer using computer algorithms from a mammogram may assist doctors in eliminat
35#
發(fā)表于 2025-3-27 15:34:11 | 只看該作者
36#
發(fā)表于 2025-3-27 20:02:29 | 只看該作者
Promoting Foreign Electronic Commerce and?Economic Welfarelibrium model to investigate how production and import taxes affect the e-commerce industry and the economy as a whole. We found that the welfare of Korea is reduced the most when import tax is imposed on both international trade margins and international transport margins. More specifically, in the
37#
發(fā)表于 2025-3-27 23:09:14 | 只看該作者
38#
發(fā)表于 2025-3-28 03:37:48 | 只看該作者
A Feature Fusion-Based Approach for?Mammographic Mass Classification Using Deep Learningcer. The manual detection of breast masses using texture analysis from digital mammograms is hard because of its diverse patterns. Automatic detection of breast masses from mammograms with computer algorithms at early phases could help physicians to avoid unnecessary biopsies. In the current study,
39#
發(fā)表于 2025-3-28 09:54:26 | 只看該作者
Recognition of?Chinese Medical Named Entity Using Multi-word Segmentation Methodn. Medical named entity recognition can transform the free text in an electronic medical record from information to data, so it has high research value and application value. However, most of the current deep learning methods use character-level segmentation for semantic feature extraction, which le
40#
發(fā)表于 2025-3-28 10:39:17 | 只看該作者
Chinese Electronic Medical Record Retrieval Method Using Fine-Tuned RoBERTa and?Hybrid Features records can not only offer great help to clinical decision-making but also bring benefits and convenience to case-based patient research and the unearthing of similar patient groups. However, the existing electronic medical record retrieval model cannot accurately and efficiently retrieve similar m
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
信丰县| 林州市| 中山市| 平顺县| 平湖市| 巴林左旗| 邵阳县| 江达县| 同仁县| 英德市| 垫江县| 达拉特旗| 甘谷县| 仙桃市| 龙游县| 崇文区| 重庆市| 资溪县| 宣武区| 五大连池市| 开远市| 遂昌县| 嘉峪关市| 桐梓县| 扎赉特旗| 堆龙德庆县| 抚松县| 云龙县| 镇宁| 绍兴县| 夏河县| 关岭| 玛多县| 长阳| 富裕县| 开平市| 浮山县| 丰城市| 古丈县| 江达县| 兴山县|