找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Information Retrieval; 24th China Conferenc Shichao Zhang,Tie-Yan Liu,Chenliang Li Conference proceedings 2018 Springer Nature Switzerland

[復(fù)制鏈接]
查看: 9003|回復(fù): 56
樓主
發(fā)表于 2025-3-21 18:53:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Information Retrieval
副標(biāo)題24th China Conferenc
編輯Shichao Zhang,Tie-Yan Liu,Chenliang Li
視頻videohttp://file.papertrans.cn/466/465191/465191.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Information Retrieval; 24th China Conferenc Shichao Zhang,Tie-Yan Liu,Chenliang Li Conference proceedings 2018 Springer Nature Switzerland
描述This book constitutes the refereed proceedings of the 24th China Conference on Information Retrieval, CCIR 2018, held in Guilin, China, in September 2018. The 22 full papers presented were carefully reviewed and selected from 52 submissions. The papers are organized in topical sections: Information retrieval, collaborative and social computing, natural language processing.
出版日期Conference proceedings 2018
關(guān)鍵詞artificial intelligence; information retrieval; internet; learning algorithms; Natural Language Processi
版次1
doihttps://doi.org/10.1007/978-3-030-01012-6
isbn_softcover978-3-030-01011-9
isbn_ebook978-3-030-01012-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書(shū)目名稱Information Retrieval影響因子(影響力)




書(shū)目名稱Information Retrieval影響因子(影響力)學(xué)科排名




書(shū)目名稱Information Retrieval網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Information Retrieval網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Information Retrieval被引頻次




書(shū)目名稱Information Retrieval被引頻次學(xué)科排名




書(shū)目名稱Information Retrieval年度引用




書(shū)目名稱Information Retrieval年度引用學(xué)科排名




書(shū)目名稱Information Retrieval讀者反饋




書(shū)目名稱Information Retrieval讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:48:21 | 只看該作者
Joint Attention LSTM Network for Aspect-Level Sentiment Analysisosed, which aspect attention and sentiment attention are combined to construct a joint attention LSTM network. The experimental results on the benchmark datasets show that the proposed method achieves better performance than the current state-of-the-art.
板凳
發(fā)表于 2025-3-22 03:38:13 | 只看該作者
地板
發(fā)表于 2025-3-22 07:40:16 | 只看該作者
5#
發(fā)表于 2025-3-22 09:08:18 | 只看該作者
6#
發(fā)表于 2025-3-22 16:03:52 | 只看該作者
7#
發(fā)表于 2025-3-22 18:51:20 | 只看該作者
Conference proceedings 2018018. The 22 full papers presented were carefully reviewed and selected from 52 submissions. The papers are organized in topical sections: Information retrieval, collaborative and social computing, natural language processing.
8#
發(fā)表于 2025-3-22 23:49:26 | 只看該作者
9#
發(fā)表于 2025-3-23 03:56:53 | 只看該作者
A Deep Top-K Relevance Matching Model for Ad-hoc Retrieval level matching scores are aggregated with the term gating network to produce the final relevance score. We have tested our model on two representative benchmark datasets. Experimental results show that our model can significantly outperform existing baseline models.
10#
發(fā)表于 2025-3-23 07:07:06 | 只看該作者
A Comparison Between Term-Based and Embedding-Based Methods for Initial Retrieval initial retrieval models on three representative retrieval tasks (Web-QA, Ad-hoc retrieval and CQA respectively). The results show that embedding based method and term based method are complementary for each other and higher recall can be achieved by combining the above two types of models based on
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 22:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华蓥市| 屏山县| 九龙县| 娄烦县| 麦盖提县| 江陵县| 巴中市| 西乡县| 哈密市| 玛纳斯县| 铅山县| 秀山| 吴江市| 太仓市| 霍林郭勒市| 岳西县| 大洼县| 虹口区| 松潘县| 南陵县| 黄山市| 壤塘县| 宁阳县| 肃南| 昌江| 凤阳县| 民丰县| 德庆县| 诏安县| 六盘水市| 定襄县| 汉源县| 阜城县| 时尚| 玉林市| 治县。| 四子王旗| 榆社县| 宁远县| 卢湾区| 高要市|