找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Information Geometry; Nihat Ay,Jürgen Jost,Lorenz Schwachh?fer Book 2017 Springer International Publishing AG 2017 60A10, 62B05, 62B10, 62

[復(fù)制鏈接]
樓主: 銀河
11#
發(fā)表于 2025-3-23 10:43:56 | 只看該作者
12#
發(fā)表于 2025-3-23 14:02:53 | 只看該作者
13#
發(fā)表于 2025-3-23 19:06:57 | 只看該作者
Finite Information Geometry,es the characteristic properties of the Fisher and Amari–Chentsov tensors for finite sample spaces, setting the stage for corresponding results for general sample spaces in subsequent chapters. It also introduces divergences and exponential and mixture families of probability distributions and descr
14#
發(fā)表于 2025-3-24 00:09:52 | 只看該作者
15#
發(fā)表于 2025-3-24 06:26:02 | 只看該作者
The Intrinsic Geometry of Statistical Models,d a pair of torsion free connections that are dual w.r.t. .. Such a structure is equivalently given in terms of a metric tensor . and a 3-symmetric tensor ., a . in the sense of Lauritzen. We close the circle with Lê’s embedding theorem that says that any such (not necessarily) compact statistical m
16#
發(fā)表于 2025-3-24 08:33:27 | 只看該作者
17#
發(fā)表于 2025-3-24 10:44:16 | 只看該作者
18#
發(fā)表于 2025-3-24 18:11:17 | 只看該作者
Introduction,ular probability measure that best fits that sampling distribution, and the surprisingly rich and useful geometric structure underlying this. The latter is the topic of this book. A basic geometry quantity, the Fisher metric, a 2-tensor, measures how sensitively the distributions depend on the sampl
19#
發(fā)表于 2025-3-24 21:54:34 | 只看該作者
Finite Information Geometry,wo complementary ways to view a probability distribution. One consists in viewing it as (positive) measure with total mass 1. The other considers it as an equivalence class of such measures, determined up to a global scaling factor. The natural geometry underlying the first is that of the unit simpl
20#
發(fā)表于 2025-3-25 01:34:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 22:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深圳市| 庐江县| 油尖旺区| 吉林省| 汉川市| 安龙县| 新疆| 三台县| 万全县| 乌兰县| 浪卡子县| 城口县| 阳江市| 舒城县| 巩义市| 深水埗区| 体育| 阿克陶县| 饶阳县| 铜川市| 墨竹工卡县| 横山县| 开远市| 新乡市| 镇沅| 仁化县| 山阴县| 蚌埠市| 西青区| 加查县| 永城市| 宝丰县| 克拉玛依市| 闻喜县| 孟村| 仪陇县| 玉山县| 察雅县| 特克斯县| 沈阳市| 尉氏县|