找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Information Geometry; Nihat Ay,Jürgen Jost,Lorenz Schwachh?fer Book 2017 Springer International Publishing AG 2017 60A10, 62B05, 62B10, 62

[復(fù)制鏈接]
樓主: 銀河
11#
發(fā)表于 2025-3-23 10:43:56 | 只看該作者
12#
發(fā)表于 2025-3-23 14:02:53 | 只看該作者
13#
發(fā)表于 2025-3-23 19:06:57 | 只看該作者
Finite Information Geometry,es the characteristic properties of the Fisher and Amari–Chentsov tensors for finite sample spaces, setting the stage for corresponding results for general sample spaces in subsequent chapters. It also introduces divergences and exponential and mixture families of probability distributions and descr
14#
發(fā)表于 2025-3-24 00:09:52 | 只看該作者
15#
發(fā)表于 2025-3-24 06:26:02 | 只看該作者
The Intrinsic Geometry of Statistical Models,d a pair of torsion free connections that are dual w.r.t. .. Such a structure is equivalently given in terms of a metric tensor . and a 3-symmetric tensor ., a . in the sense of Lauritzen. We close the circle with Lê’s embedding theorem that says that any such (not necessarily) compact statistical m
16#
發(fā)表于 2025-3-24 08:33:27 | 只看該作者
17#
發(fā)表于 2025-3-24 10:44:16 | 只看該作者
18#
發(fā)表于 2025-3-24 18:11:17 | 只看該作者
Introduction,ular probability measure that best fits that sampling distribution, and the surprisingly rich and useful geometric structure underlying this. The latter is the topic of this book. A basic geometry quantity, the Fisher metric, a 2-tensor, measures how sensitively the distributions depend on the sampl
19#
發(fā)表于 2025-3-24 21:54:34 | 只看該作者
Finite Information Geometry,wo complementary ways to view a probability distribution. One consists in viewing it as (positive) measure with total mass 1. The other considers it as an equivalence class of such measures, determined up to a global scaling factor. The natural geometry underlying the first is that of the unit simpl
20#
發(fā)表于 2025-3-25 01:34:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄浦区| 乡城县| 大荔县| 翁源县| 鸡泽县| 呼和浩特市| 长乐市| 拉萨市| 开原市| 普格县| 桦川县| 乡城县| 东乡| 峡江县| 马关县| 姜堰市| 崇左市| 武山县| 丰顺县| 格尔木市| 龙山县| 丁青县| 峨山| 荣成市| 陈巴尔虎旗| 祁阳县| 田东县| 墨竹工卡县| 进贤县| 海南省| 驻马店市| 大化| 土默特左旗| 江阴市| 乐平市| 龙口市| 济源市| 辽阳县| 宝应县| 庄浪县| 葵青区|