找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Infinite Dimensional Analysis, Quantum Probability and Applications; QP41 Conference, Al Luigi Accardi,Farrukh Mukhamedov,Ahmed Al Rawashd

[復(fù)制鏈接]
樓主: magnify
41#
發(fā)表于 2025-3-28 17:40:07 | 只看該作者
Trace Decreasing Quantum Dynamical Maps: Divisibility and Entanglement Dynamics conditional output states as if the dynamics were trace preserving. Here we show that this approach leads to incorrect conclusions about the dynamics divisibility, namely, one can observe an increase in the trace distance or the system-ancilla entanglement although the trace decreasing dynamics is
42#
發(fā)表于 2025-3-28 18:56:29 | 只看該作者
43#
發(fā)表于 2025-3-29 01:33:15 | 只看該作者
44#
發(fā)表于 2025-3-29 06:03:30 | 只看該作者
Hilbert von Neumann Modules , Concrete von Neumann Modulest. The von Neumann or .–objects among the Hilbert (.–)modules are around since the first papers by Paschke [.] and Rieffel [., .] that lift Kaplansky’s setting [.] to modules over noncommutative .–algebras. While the formal definition of .–. is due to Baillet, Denizeau, and Havet [.], the one of . a
45#
發(fā)表于 2025-3-29 10:54:43 | 只看該作者
46#
發(fā)表于 2025-3-29 13:26:30 | 只看該作者
A Mean-Field Laser Quantum Master Equationence of a unique regular family . of density matrices which is a stationary solution. In case a relevant parameter . is less than 1, we prove that any regular solution converges exponentially fast to the equilibrium. A locally exponential stable limit cycle arises at the regular stationary state as
47#
發(fā)表于 2025-3-29 18:45:40 | 只看該作者
48#
發(fā)表于 2025-3-29 21:43:30 | 只看該作者
Solutions of Infinite Dimensional Partial Differential Equationsnite dimensional?distributions space. The technique we use is the representation of this infinite dimensional Laplacian as a convolution operator. This representation enables us to apply the convolution calculus on a suitable distribution space to obtain explicit solution of some perturbed evolution
49#
發(fā)表于 2025-3-30 02:36:28 | 只看該作者
50#
發(fā)表于 2025-3-30 07:27:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 11:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临汾市| 万年县| 合肥市| 武邑县| 武清区| 呼图壁县| 临猗县| 葵青区| 太白县| 晋宁县| 会昌县| 岳普湖县| 张家界市| 涡阳县| 韩城市| 博湖县| 吉安县| 巴南区| 苗栗县| 胶南市| 忻城县| 无极县| 郴州市| 鄂托克前旗| 封开县| 柞水县| 澎湖县| 广灵县| 漠河县| 武义县| 卫辉市| 大冶市| 保德县| 图木舒克市| 澄江县| 页游| 苗栗市| 曲水县| 哈巴河县| 靖州| 黄冈市|