找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Inequalities Involving Functions and Their Integrals and Derivatives; D. S. Mitrinovi?,J. E. Pe?ari?,A. M. Fink Book 1991 Springer Science

[復(fù)制鏈接]
樓主: CILIA
51#
發(fā)表于 2025-3-30 09:03:05 | 只看該作者
52#
發(fā)表于 2025-3-30 13:45:45 | 只看該作者
53#
發(fā)表于 2025-3-30 18:30:19 | 只看該作者
Inequalities of Gronwall Type of a Single Variable,T. Gronwall [.] in 1919 proved the following result: . 1. ....
54#
發(fā)表于 2025-3-30 22:58:16 | 只看該作者
55#
發(fā)表于 2025-3-31 03:45:21 | 只看該作者
56#
發(fā)表于 2025-3-31 05:09:25 | 只看該作者
Inequalities of Bernstein-Mordell Type,If a real polynomial ..(.=..+...+...+.... reaches the value of 1 anywhere on the segment [-1,1], then . Except for an obvious error, this relation has been obtained by S. N. Bernstein [.].
57#
發(fā)表于 2025-3-31 09:33:31 | 只看該作者
Methods of Proofs for Integral Inequalities,In this Chapter we give a number of different methods for proofs of various integro-differential inequalities, with emphasis on the more elementary methods.
58#
發(fā)表于 2025-3-31 14:46:33 | 只看該作者
Particular Inequalities,This Chapter is devoted to various unconnected results which do not easily relate to the types we have presented in the previous chapters. A derivative or integral of a function of one or two variables appear in each inequality of this Chapter.
59#
發(fā)表于 2025-3-31 18:41:44 | 只看該作者
,Hilbert’s and Related Inequalities,tions, and a proof was published by H. Weyl [1] in his dissertation in 1908. The exact value 7r of the constant (which is best possible) was given by I. Schur [2]. He also gave an integral analogue of (1.1).
60#
發(fā)表于 2025-3-31 23:42:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-8 07:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河津市| 白银市| 安国市| 都昌县| 莱芜市| 哈密市| 四川省| 兰西县| 岱山县| 天峨县| 邳州市| 科技| 庆阳市| 莲花县| 屯门区| 武冈市| 股票| 漳州市| 乐都县| 武穴市| 常宁市| 水城县| 松阳县| 维西| 南安市| 罗定市| 连城县| 安远县| 延安市| 青阳县| 河津市| 赣榆县| 四会市| 玉林市| 扶风县| 固原市| 宜兴市| 辛集市| 利辛县| 宁陵县| 莒南县|