找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Inductive Logic Programming; 26th International C James Cussens,Alessandra Russo Conference proceedings 2017 Springer International Publish

[復(fù)制鏈接]
樓主: 譴責(zé)
21#
發(fā)表于 2025-3-25 03:54:40 | 只看該作者
22#
發(fā)表于 2025-3-25 09:12:57 | 只看該作者
23#
發(fā)表于 2025-3-25 12:34:46 | 只看該作者
Learning Through Advice-Seeking via Transfer,ernative domains, to guide the expert to give useful advice. This knowledge is captured in the form of first-order logic horn clauses. We demonstrate empirically the value of the transferred knowledge, as well as the contribution of the expert in providing initial knowledge, plus revising and directing the use of the transferred knowledge.
24#
發(fā)表于 2025-3-25 17:02:21 | 只看該作者
25#
發(fā)表于 2025-3-25 22:21:45 | 只看該作者
Towards Nonmonotonic Relational Learning from Knowledge Graphs,osed which, however, applies to a flattened representation of a KG with only unary facts. In this work we make the first steps towards extending this approach to KGs in their original relational form, and provide preliminary evaluation results on real-world KGs, which demonstrate the effectiveness of our method.
26#
發(fā)表于 2025-3-26 02:23:22 | 只看該作者
27#
發(fā)表于 2025-3-26 04:56:48 | 只看該作者
28#
發(fā)表于 2025-3-26 10:00:37 | 只看該作者
Online Structure Learning for Traffic Management, data, as well as synthetic data generated by a professional traffic micro-simulator. The experimental results demonstrate that . can effectively learn traffic congestion definitions and, in some cases, outperform rules constructed by human experts.
29#
發(fā)表于 2025-3-26 14:48:07 | 只看該作者
Learning Relational Dependency Networks for Relation Extraction,evaluate the different components in the benchmark KBP 2015 task and show that RDNs effectively model a diverse set of features and perform competitively with current state-of-the-art relation extraction methods.
30#
發(fā)表于 2025-3-26 20:14:03 | 只看該作者
0302-9743 learning; logical foundations; statistical relational learning; probabilistic ILP; implementation and scalability; applications in robotics, cyber security and games..978-3-319-63341-1978-3-319-63342-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 14:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安塞县| 水富县| 衢州市| 扎鲁特旗| 安化县| 炉霍县| 沁阳市| 通化市| 江门市| 宁都县| 大厂| 山丹县| 会同县| 保定市| 平乐县| 兰西县| 德钦县| 霍州市| 永新县| 綦江县| 房山区| 凯里市| 化隆| 泰宁县| 钦州市| 宁明县| 文安县| 将乐县| 徐州市| 淅川县| 衡南县| 平谷区| 都兰县| 江华| 康保县| 溧水县| 宜兰市| 德化县| 平阳县| 霍城县| 南和县|