找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Indefinite Linear Algebra and Applications; Israel Gohberg,Peter Lancaster,Leiba Rodman Textbook 2005 Birkh?user Basel 2005 Inner product

[復(fù)制鏈接]
樓主: 挑染
21#
發(fā)表于 2025-3-25 04:42:27 | 只看該作者
22#
發(fā)表于 2025-3-25 08:21:32 | 只看該作者
23#
發(fā)表于 2025-3-25 14:10:04 | 只看該作者
Differential Equations of First Order, is to discuss those systems with symmetries in which an indefinite inner product plays a role, so that these applications serve to fix some of the theory already developed. Also, the scene will be set for a more substantial treatment of higher order systems in Chapter 13. The reader is referred to
24#
發(fā)表于 2025-3-25 16:20:16 | 只看該作者
Differential and Difference Equations of Higher Order,The notions and results developed in Chapter 12 for matrix polynomials are used in this chapter to study systems of differential and difference equations of higher order with constant coefficients.
25#
發(fā)表于 2025-3-25 20:04:42 | 只看該作者
26#
發(fā)表于 2025-3-26 02:11:17 | 只看該作者
27#
發(fā)表于 2025-3-26 07:08:15 | 只看該作者
Functions of ,-Selfadjoint Matrices,and .-unitary matrices. In this chapter the objective is to present a more systematic investigation of functions of .-selfadjoint matrices. In particular, we are to investigate how the sign characteristic is transformed.
28#
發(fā)表于 2025-3-26 08:59:04 | 只看該作者
Israel Gohberg,Peter Lancaster,Leiba RodmanThorough treatment of indefinite inner product spaces.Combining modern linear algebra with systems theory.Suitable as reference work for scientists and engineers
29#
發(fā)表于 2025-3-26 12:51:51 | 只看該作者
30#
發(fā)表于 2025-3-26 18:05:51 | 只看該作者
Orthogonalization and Orthogonal Polynomials,e classical case based on a definite inner product..The chapter consists of four sections. The first contains general results concerning orthogonal (regular) systems. The second contains discussion of a fundamental theorem of Szeg? for the case of a definite inner product, as well as a more general
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 17:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
启东市| 新宁县| 西畴县| 嘉禾县| 桂东县| 云霄县| 曲阜市| 武义县| 娱乐| 东乌| 惠水县| 汶川县| 吴旗县| 颍上县| 福州市| 西畴县| 许昌市| 洛南县| 宜川县| 湛江市| 武宣县| 东明县| 依兰县| 新邵县| 依兰县| 东台市| 梓潼县| 黔南| 法库县| 新干县| 蒙山县| 黑龙江省| 通河县| 株洲市| 茂名市| 韩城市| 托里县| 元朗区| 喀喇| 黄梅县| 甘泉县|