找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Indefinite Linear Algebra and Applications; Israel Gohberg,Peter Lancaster,Leiba Rodman Textbook 2005 Birkh?user Basel 2005 Inner product

[復(fù)制鏈接]
樓主: 挑染
21#
發(fā)表于 2025-3-25 04:42:27 | 只看該作者
22#
發(fā)表于 2025-3-25 08:21:32 | 只看該作者
23#
發(fā)表于 2025-3-25 14:10:04 | 只看該作者
Differential Equations of First Order, is to discuss those systems with symmetries in which an indefinite inner product plays a role, so that these applications serve to fix some of the theory already developed. Also, the scene will be set for a more substantial treatment of higher order systems in Chapter 13. The reader is referred to
24#
發(fā)表于 2025-3-25 16:20:16 | 只看該作者
Differential and Difference Equations of Higher Order,The notions and results developed in Chapter 12 for matrix polynomials are used in this chapter to study systems of differential and difference equations of higher order with constant coefficients.
25#
發(fā)表于 2025-3-25 20:04:42 | 只看該作者
26#
發(fā)表于 2025-3-26 02:11:17 | 只看該作者
27#
發(fā)表于 2025-3-26 07:08:15 | 只看該作者
Functions of ,-Selfadjoint Matrices,and .-unitary matrices. In this chapter the objective is to present a more systematic investigation of functions of .-selfadjoint matrices. In particular, we are to investigate how the sign characteristic is transformed.
28#
發(fā)表于 2025-3-26 08:59:04 | 只看該作者
Israel Gohberg,Peter Lancaster,Leiba RodmanThorough treatment of indefinite inner product spaces.Combining modern linear algebra with systems theory.Suitable as reference work for scientists and engineers
29#
發(fā)表于 2025-3-26 12:51:51 | 只看該作者
30#
發(fā)表于 2025-3-26 18:05:51 | 只看該作者
Orthogonalization and Orthogonal Polynomials,e classical case based on a definite inner product..The chapter consists of four sections. The first contains general results concerning orthogonal (regular) systems. The second contains discussion of a fundamental theorem of Szeg? for the case of a definite inner product, as well as a more general
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 09:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蕲春县| 长春市| 德令哈市| 肇州县| 安泽县| 珲春市| 乐平市| 太仓市| 禄劝| 永仁县| 澎湖县| 麻城市| 神木县| 乐安县| 林芝县| 沭阳县| 金沙县| 连城县| 璧山县| 巨鹿县| 九台市| 屯门区| 民权县| 苏尼特右旗| 枣庄市| 天全县| 江北区| 禄丰县| 德格县| 运城市| 枣庄市| 抚顺市| 宣恩县| 新田县| 怀柔区| 苗栗县| 浑源县| 海伦市| 郑州市| 万年县| 平山县|