找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius; Maria Eulália Vares,Roberto Fernández,Charles M. N Book 2021 The Editor(s) (

[復(fù)制鏈接]
樓主: bradycardia
51#
發(fā)表于 2025-3-30 09:21:54 | 只看該作者
52#
發(fā)表于 2025-3-30 12:53:00 | 只看該作者
Approximate and Exact Solutions of Intertwining Equations Through Random Spanning Forests,ns in their convex hull. Motivated by signal processing problems and metastability studies we are interested in the case when the size of such families is . than the size of the state space, and we want such distributions to be with “small overlap” among them. To this aim we introduce a . function t
53#
發(fā)表于 2025-3-30 19:57:07 | 只看該作者
Bernoulli Hyperplane Percolation,pendently at random. We extend the results about Bernoulli line percolation showing that the model undergoes a non-trivial phase transition and proving the existence of a transition from exponential to power-law decay within some regions of the subcritical phase.
54#
發(fā)表于 2025-3-30 20:45:32 | 只看該作者
55#
發(fā)表于 2025-3-31 02:05:29 | 只看該作者
56#
發(fā)表于 2025-3-31 08:22:22 | 只看該作者
57#
發(fā)表于 2025-3-31 12:37:32 | 只看該作者
Geodesic Rays and Exponents in Ergodic Planar First Passage Percolation, shape is the .. ball and that there are exactly four infinite geodesics starting at the origin a.s. In addition we determine the exponents for the variance and wandering of finite geodesics. We show that the variance and wandering exponents do not satisfy the relationship of .?=?2.???1 which is exp
58#
發(fā)表于 2025-3-31 15:50:52 | 只看該作者
An Overview of the Balanced Excited Random Walk,g on two integer parameters 1?≤?.., ..?≤?., which whenever it is at a site . at time ., it jumps to .?±?.. with uniform probability, where .., …, .. are the canonical vectors, for 1?≤?.?≤?.., if the site . was visited for the first time at time ., while it jumps to .?±?.. with uniform probability, f
59#
發(fā)表于 2025-3-31 20:06:59 | 只看該作者
60#
發(fā)表于 2025-3-31 23:20:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 01:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
儋州市| 扎兰屯市| 石嘴山市| 西林县| 九龙城区| 泰来县| 崇礼县| 开江县| 抚宁县| 祁阳县| 延长县| 舞阳县| 建平县| 西和县| 南召县| 称多县| 九江县| 合江县| 建阳市| 林周县| 富阳市| 云阳县| 鹿泉市| 拉萨市| 江口县| 大安市| 乐安县| 康定县| 梅河口市| 安多县| 武平县| 屏南县| 长治县| 陈巴尔虎旗| 沁水县| 苏州市| 龙岩市| 沁源县| 吴忠市| 收藏| 静安区|