找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Important Developments in Soliton Theory; A. S. Fokas,V. E. Zakharov Book 1993 Springer-Verlag Berlin Heidelberg 1993 Eigenvalue.Hamiltoni

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 06:54:00 | 只看該作者
Differential Geometry and Hydrodynamics of Soliton Lattices.Dubrovin, I.M. Krichever, S.P. Tsarev (and the present author). More details may be found in the survey article [.]. Modern needs in the large new classes of hydrodynamic type systems appear in connection with very interesting asymptotic method - so called “nonlinear analog of WKB-method”, method o
22#
發(fā)表于 2025-3-25 08:32:15 | 只看該作者
Bi-Hamiltonian Structures and Integrabilityhe works of Zakharov and Faddeev [1] and Gardner [2] who interpreted the KortewegdeVries (KdV) equation . as a completely integrable Hamiltonian system in an infinite dimensional phase space (the relevant Hamiltonian operator is ?.). Furthermore, it was shown in [1], that the inverse spectral method
23#
發(fā)表于 2025-3-25 12:07:41 | 只看該作者
24#
發(fā)表于 2025-3-25 17:02:39 | 只看該作者
25#
發(fā)表于 2025-3-25 22:41:39 | 只看該作者
26#
發(fā)表于 2025-3-26 01:04:32 | 只看該作者
27#
發(fā)表于 2025-3-26 08:07:54 | 只看該作者
The Cauchy Problem for Doubly Periodic Solutions of KP-II Equationheory of integrable equations the algebraic-geometrical methods provide a construction of the periodic and quasi-periodic solutions which can be written exactly in terms of the theta-functions of auxiliary Riemann surfaces.
28#
發(fā)表于 2025-3-26 12:30:09 | 只看該作者
29#
發(fā)表于 2025-3-26 14:46:41 | 只看該作者
Springer Series in Nonlinear Dynamicshttp://image.papertrans.cn/i/image/462710.jpg
30#
發(fā)表于 2025-3-26 18:17:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 19:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莱芜市| 吉木乃县| 平罗县| 巩留县| 凌海市| 荥阳市| 遂昌县| 怀安县| 平潭县| 尼勒克县| 蒙山县| 新绛县| 龙里县| 甘孜县| 望奎县| 武隆县| 曲阳县| 武城县| 永兴县| 嵩明县| 房产| 吴江市| 黑水县| 隆林| 德清县| 增城市| 广安市| 任丘市| 阿尔山市| 沅江市| 嵩明县| 雅江县| 江安县| 青田县| 巍山| 阳泉市| 巩留县| 秭归县| 天峨县| 汝阳县| 连城县|