找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Immunoinformatics; Predicting Immunogen Darren R. Flower Book 2007 Humana Press 2007 Allele.Antigen.Computer.In silico.artificial intellige

[復(fù)制鏈接]
樓主: Coenzyme
21#
發(fā)表于 2025-3-25 06:56:59 | 只看該作者
Structural Basis for HLA-A2 Supertypesalleles in a combinatorial manner. However, it has been suggested that majority of alleles can be covered within few HLA supertypes, where different members of a supertype bind similar peptides, yet exhibiting distinct repertoires. Nonetheless, the structural basis for HLA supertype-like function is
22#
發(fā)表于 2025-3-25 08:18:24 | 只看該作者
Definition of MHC Supertypes Through Clustering of MHC Peptide-Binding Repertoiresthe design of epitope-based vaccines. Population coverage of epitope vaccines is, however, compromised by the extreme polymorphism of MHC molecules, which is in fact the basis for their differential peptide binding. Therefore, grouping of MHC molecules into supertypes according to peptide-binding sp
23#
發(fā)表于 2025-3-25 14:17:22 | 只看該作者
24#
發(fā)表于 2025-3-25 15:51:54 | 只看該作者
Prediction of Peptide-MHC Binding Using Profiles given MHC molecule are related by sequence similarity. Therefore, a position-specific scoring matrix (PSSM)—also known as profile—derived from a set of aligned peptides known to bind to a given MHC molecule can be used as a predictor of both peptide–MHC binding and T-cell epitopes. In this approach
25#
發(fā)表于 2025-3-25 22:42:41 | 只看該作者
26#
發(fā)表于 2025-3-26 03:51:53 | 只看該作者
Artificial Intelligence Methods for Predicting T-Cell Epitopes diseases and cancers. We have applied two artificial intelligence approaches to build models for predicting T-cell epitopes. We developed a support vector machine to predict T-cell epitopes for an MHC class I-restricted T-cell clone (TCC) using synthesized peptide data. For predicting T-cell epitop
27#
發(fā)表于 2025-3-26 08:13:44 | 只看該作者
28#
發(fā)表于 2025-3-26 11:22:51 | 只看該作者
29#
發(fā)表于 2025-3-26 14:37:21 | 只看該作者
https://doi.org/10.1007/978-1-60327-118-9Allele; Antigen; Computer; In silico; artificial intelligence; calculus; database; databases; genetics; machi
30#
發(fā)表于 2025-3-26 17:03:20 | 只看該作者
Immunoinformatics978-1-60327-118-9Series ISSN 1064-3745 Series E-ISSN 1940-6029
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 13:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰县| 安国市| 凌海市| 邛崃市| 通山县| 潢川县| 玉田县| 潜江市| 内黄县| 远安县| 青冈县| 东宁县| 金门县| 长泰县| 浦江县| 德清县| 静海县| 赞皇县| 高陵县| 潢川县| 上栗县| 山丹县| 武穴市| 鄄城县| 唐山市| 会宁县| 南漳县| 彭山县| 神农架林区| 鄂尔多斯市| 南川市| 珲春市| 丰原市| 阳原县| 高淳县| 隆化县| 林州市| 龙门县| 洮南市| 丰都县| 永修县|