找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Immunoinformatics; Predicting Immunogen Darren R. Flower Book 2007 Humana Press 2007 Allele.Antigen.Computer.In silico.artificial intellige

[復(fù)制鏈接]
樓主: Coenzyme
21#
發(fā)表于 2025-3-25 06:56:59 | 只看該作者
Structural Basis for HLA-A2 Supertypesalleles in a combinatorial manner. However, it has been suggested that majority of alleles can be covered within few HLA supertypes, where different members of a supertype bind similar peptides, yet exhibiting distinct repertoires. Nonetheless, the structural basis for HLA supertype-like function is
22#
發(fā)表于 2025-3-25 08:18:24 | 只看該作者
Definition of MHC Supertypes Through Clustering of MHC Peptide-Binding Repertoiresthe design of epitope-based vaccines. Population coverage of epitope vaccines is, however, compromised by the extreme polymorphism of MHC molecules, which is in fact the basis for their differential peptide binding. Therefore, grouping of MHC molecules into supertypes according to peptide-binding sp
23#
發(fā)表于 2025-3-25 14:17:22 | 只看該作者
24#
發(fā)表于 2025-3-25 15:51:54 | 只看該作者
Prediction of Peptide-MHC Binding Using Profiles given MHC molecule are related by sequence similarity. Therefore, a position-specific scoring matrix (PSSM)—also known as profile—derived from a set of aligned peptides known to bind to a given MHC molecule can be used as a predictor of both peptide–MHC binding and T-cell epitopes. In this approach
25#
發(fā)表于 2025-3-25 22:42:41 | 只看該作者
26#
發(fā)表于 2025-3-26 03:51:53 | 只看該作者
Artificial Intelligence Methods for Predicting T-Cell Epitopes diseases and cancers. We have applied two artificial intelligence approaches to build models for predicting T-cell epitopes. We developed a support vector machine to predict T-cell epitopes for an MHC class I-restricted T-cell clone (TCC) using synthesized peptide data. For predicting T-cell epitop
27#
發(fā)表于 2025-3-26 08:13:44 | 只看該作者
28#
發(fā)表于 2025-3-26 11:22:51 | 只看該作者
29#
發(fā)表于 2025-3-26 14:37:21 | 只看該作者
https://doi.org/10.1007/978-1-60327-118-9Allele; Antigen; Computer; In silico; artificial intelligence; calculus; database; databases; genetics; machi
30#
發(fā)表于 2025-3-26 17:03:20 | 只看該作者
Immunoinformatics978-1-60327-118-9Series ISSN 1064-3745 Series E-ISSN 1940-6029
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 15:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆安县| 东兴市| 南雄市| 海门市| 雅江县| 亚东县| 南溪县| 三穗县| 六盘水市| 永德县| 青阳县| 修水县| 大悟县| 广昌县| 枣阳市| 恩施市| 墨江| 安康市| 双柏县| 徐水县| 南丹县| 乐清市| 蕉岭县| 安庆市| 报价| 马尔康县| 松潘县| 郸城县| 阿鲁科尔沁旗| 汝阳县| 建昌县| 石泉县| 黄大仙区| 渭源县| 昆山市| 通榆县| 博白县| 施甸县| 白银市| 开化县| 长汀县|