找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Image and Video Technology; 8th Pacific-Rim Symp Manoranjan Paul,Carlos Hitoshi,Qingming Huang Conference proceedings 2018 Springer Nature

[復制鏈接]
樓主: 黑暗社會
51#
發(fā)表于 2025-3-30 11:08:38 | 只看該作者
52#
發(fā)表于 2025-3-30 14:37:19 | 只看該作者
Visual Comparison Based on Multi-class Classification Modeldict whether a visual attribute of one image is equal to that of another image. Most existing methods for visual comparison relying on ranking Support Vector Machine (SVM) functions only distinguish which image in a pair exhibits an attribute more or less in test time. However, it is significant to
53#
發(fā)表于 2025-3-30 19:55:09 | 只看該作者
54#
發(fā)表于 2025-3-30 23:23:50 | 只看該作者
Using Sparse-Point Disparity Estimation and Spatial Propagation to Construct Dense Disparity Map for this kind of application to estimate a reliable dense disparity map. In this paper, we propose a strategy of using a sparse feature point set to estimate reliable disparity values, which are then propagated to other non-feature points to form the final dense disparity map. Our selected feature poin
55#
發(fā)表于 2025-3-31 03:08:18 | 只看該作者
56#
發(fā)表于 2025-3-31 07:52:20 | 只看該作者
Single Image Dehazing via Image Generatingthe number of the equations is smaller than the number of unknowns. In this paper, a deep learning-based method, called Dehaze CNN, is proposed to estimate a clear image patch from a hazy image patch, which can be used to reconstruct a haze-free image. Our method recovers a clear image by a learning
57#
發(fā)表于 2025-3-31 12:02:22 | 只看該作者
Automatic Brain Tumor Segmentation in Multispectral MRI Volumes Using a Random Forest Approachention of medical staff upon suspected positive cases. This paper proposes a machine learning solution based on binary decision trees and random forest technique, trained to provide accurate segmentation of brain tumors from multispectral MRI volumes. The current version of our system was trained an
58#
發(fā)表于 2025-3-31 15:15:47 | 只看該作者
59#
發(fā)表于 2025-3-31 19:37:42 | 只看該作者
60#
發(fā)表于 2025-3-31 23:44:37 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 15:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
永德县| 改则县| 水城县| 弥渡县| 龙山县| 安西县| 万载县| 巩义市| 新河县| 泽州县| 海晏县| 武川县| 南郑县| 肥西县| 绥德县| 徐州市| 潢川县| 邓州市| 许昌市| 鹤岗市| 秦皇岛市| 铅山县| 荆州市| 双鸭山市| 拉孜县| 新安县| 青冈县| 托里县| 湟源县| 雅江县| 家居| 郑州市| 巨鹿县| 德钦县| 罗江县| 江永县| 邵东县| 七台河市| 宜良县| 南溪县| 博爱县|