找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Image and Graphics; 9th International Co Yao Zhao,Xiangwei Kong,David Taubman Conference proceedings 2017 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
樓主: Affordable
11#
發(fā)表于 2025-3-23 09:57:44 | 只看該作者
Jiayu Dong,Huicheng Zheng,Lina Liannd self-attention within input sequence, where the input sequence contains a current question and a passage. Then a feature selection method is designed to enhance the useful history turns of conversation and weaken the unnecessary information. Finally, we demonstrate the effectiveness of the propos
12#
發(fā)表于 2025-3-23 17:35:08 | 只看該作者
Long Zhang,Jieyu Zhao,Xiangfu Shi,Xulun Yeith the NER model to fuse both contexts and dictionary knowledge into NER. Extensive experiments on the CoNLL-2003 benchmark dataset validate the effectiveness of our approach in exploiting entity dictionaries to improve the performance of various NER models.
13#
發(fā)表于 2025-3-23 21:24:45 | 只看該作者
14#
發(fā)表于 2025-3-24 01:53:43 | 只看該作者
Yang Yu,Zhiqiang Gong,Ping Zhong,Jiaxin Shannd self-attention within input sequence, where the input sequence contains a current question and a passage. Then a feature selection method is designed to enhance the useful history turns of conversation and weaken the unnecessary information. Finally, we demonstrate the effectiveness of the propos
15#
發(fā)表于 2025-3-24 02:56:00 | 只看該作者
16#
發(fā)表于 2025-3-24 09:21:15 | 只看該作者
17#
發(fā)表于 2025-3-24 11:22:01 | 只看該作者
Jing Wang,Hong Zhu,Shan Xue,Jing Shipairs. In the interaction layer, we initially fuse the information of the sentence pairs to obtain low-level semantic information; at the same time, we use the bi-directional attention in the machine reading comprehension model and self-attention to obtain the high-level semantic information. We use
18#
發(fā)表于 2025-3-24 16:37:19 | 只看該作者
19#
發(fā)表于 2025-3-24 21:27:34 | 只看該作者
20#
發(fā)表于 2025-3-25 00:48:24 | 只看該作者
Wei Hu,Hongyu Qi,Zhenbing Zhao,Leilei Xuction strategies to explore its effect. We conduct experiments on seven Semantic Textual Similarity (STS) tasks. The experimental results show that our ConIsI models based on . and . achieve state-of-the-art performance, substantially outperforming previous best models SimCSE-. and SimCSE-. by 2.05%
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 11:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沈阳市| 胶州市| 旬邑县| 孙吴县| 元阳县| 波密县| 龙南县| 德格县| 裕民县| 盐山县| 平南县| 张北县| 资兴市| 波密县| 晋宁县| 叙永县| 绥棱县| 根河市| 黔江区| 涟源市| 五寨县| 水富县| 泰州市| 得荣县| 罗城| 友谊县| 巫山县| 惠州市| 耿马| 张家川| 樟树市| 彭阳县| 孝感市| 阳新县| 牙克石市| 涟水县| 英超| 海林市| 木兰县| 北宁市| 清远市|