找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Image Analysis; 22nd Scandinavian Co Rikke Gade,Michael Felsberg,Joni-Kristian K?m?r?in Conference proceedings 2023 The Editor(s) (if appli

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 23:47:44 | 只看該作者
32#
發(fā)表于 2025-3-27 04:42:29 | 只看該作者
CHAD: Charlotte Anomaly Datasetrmine if specific frames of a video contain abnormal behaviors. However, video anomaly detection is particularly context-specific, and the availability of representative datasets heavily limits real-world accuracy. Additionally, the metrics currently reported by most state-of-the-art methods often d
33#
發(fā)表于 2025-3-27 07:04:41 | 只看該作者
iDFD: A Dataset Annotated for?Depth and?Defocusroposed to solve these two tasks separately, using Deep Learning (DL) powerful learning capability. However, when it comes to training the Deep Neural Networks (DNN) for image deblurring or Depth from Defocus (DFD), the mentioned methods are mostly based on synthetic training datasets because of the
34#
發(fā)表于 2025-3-27 13:02:18 | 只看該作者
35#
發(fā)表于 2025-3-27 15:19:44 | 只看該作者
36#
發(fā)表于 2025-3-27 18:17:11 | 只看該作者
37#
發(fā)表于 2025-3-28 00:11:10 | 只看該作者
Attention-guided Boundary Refinement on?Anchor-free Temporal Action Detectionndencies among features from different temporal locations. Additionally, based on the developed temporal attention unit, we propose an attention-guided boundary refinement module for revising action prediction results. Besides, we integrate the proposed module into a contemporary anchor-free detecto
38#
發(fā)表于 2025-3-28 03:52:48 | 只看該作者
Spatio-temporal Attention Graph Convolutions for?Skeleton-based Action Recognitionand the method has achieved excellent results recently. However, GCN-based techniques only focus on the spatial correlations between human joints and often overlook the temporal relationships. In an action sequence, the consecutive frames in a neighborhood contain similar poses and using only tempor
39#
發(fā)表于 2025-3-28 07:07:37 | 只看該作者
40#
發(fā)表于 2025-3-28 11:59:45 | 只看該作者
To Quantify an?Image Relevance Relative to?a?Target 3D Objectd be both informative and offer a relevant view of the object, .a pose that presents the essential characteristic information about the 3D object. To estimate the quality of the view, we propose to rely on repeatable, second order features, extracted with a curvilinear saliency detector, in order to
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-7 14:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马山县| 邹城市| 抚远县| 承德市| 广饶县| 东山县| 朝阳区| 泰兴市| 棋牌| 香格里拉县| 重庆市| 阿鲁科尔沁旗| 广汉市| 松江区| 额济纳旗| 平邑县| 乌恰县| 天全县| 长乐市| 项城市| 柘荣县| 惠水县| 三原县| 永川市| 怀安县| 临沂市| 庐江县| 无棣县| 沂南县| 临江市| 永康市| 新沂市| 玉环县| 安阳县| 樟树市| 五河县| 苗栗市| 水富县| 沙田区| 揭东县| 古田县|