找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: IUTAM Symposium on Computational Physics and New Perspectives in Turbulence; Proceedings of the I Yukio Kaneda Conference proceedings 2008

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 16:08:15 | 只看該作者
42#
發(fā)表于 2025-3-28 19:40:57 | 只看該作者
43#
發(fā)表于 2025-3-28 23:49:39 | 只看該作者
44#
發(fā)表于 2025-3-29 04:11:08 | 只看該作者
45#
發(fā)表于 2025-3-29 10:20:32 | 只看該作者
Multifractal Analysis by Using High-Resolution Direct Numerical Simulation of Turbulencentermittencies associated with . and ., respectively, agree well with each other in the inertial subrange. This result is consistent with log.. and log.. correlating well with each other for the scale . in the inertial subrange, where the subscript denotes the local average over a cubic domain of size ..
46#
發(fā)表于 2025-3-29 13:19:14 | 只看該作者
Reynolds Number Effects on the Turbulent Mixing of Passive Scalarsease. The intermittency of the scalar gradient and dissipation rate fields is measured by the fourth order derivative moment and the multifractal formalism, respectively. Both analysis methods indicate an increasing small-scale intermittency of the mixing for increasing . at fixed ..
47#
發(fā)表于 2025-3-29 18:45:31 | 只看該作者
48#
發(fā)表于 2025-3-29 23:06:43 | 只看該作者
Some Contributions and Challenges of Computational Turbulence Researchxpensive to experiment with them, but it is argued that, if history can be taken as a guide, both problems will become routinely computable in the next decade, and that we will then be able to attack their dynamics.
49#
發(fā)表于 2025-3-30 03:28:00 | 只看該作者
50#
發(fā)表于 2025-3-30 06:57:34 | 只看該作者
nections on corresponding Lie algebroids.It contains a comprIn this book we first review the ideas of Lie groupoid and Lie algebroid, and the associated concepts of connection. We next consider Lie groupoids of fibre morphisms of a ?fibre bundle, and the connections on such groupoids together with t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 07:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江孜县| 沧州市| 枣阳市| 潢川县| 绥江县| 龙南县| 玛沁县| 甘南县| 长武县| 长寿区| 石首市| 深圳市| 兴化市| 方正县| 梁河县| 英山县| 顺平县| 普陀区| 达州市| 定州市| 台江县| 疏附县| 湟源县| 内黄县| 阜南县| 阿克苏市| 永泰县| 长宁区| 壤塘县| 额济纳旗| 鹰潭市| 嘉义县| 松滋市| 调兵山市| 隆林| 莱州市| 松桃| 溧阳市| 墨竹工卡县| 宁阳县| 新竹县|