找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: IUTAM Symposium on Computational Physics and New Perspectives in Turbulence; Proceedings of the I Yukio Kaneda Conference proceedings 2008

[復制鏈接]
樓主: 對將來事件
41#
發(fā)表于 2025-3-28 16:08:15 | 只看該作者
42#
發(fā)表于 2025-3-28 19:40:57 | 只看該作者
43#
發(fā)表于 2025-3-28 23:49:39 | 只看該作者
44#
發(fā)表于 2025-3-29 04:11:08 | 只看該作者
45#
發(fā)表于 2025-3-29 10:20:32 | 只看該作者
Multifractal Analysis by Using High-Resolution Direct Numerical Simulation of Turbulencentermittencies associated with . and ., respectively, agree well with each other in the inertial subrange. This result is consistent with log.. and log.. correlating well with each other for the scale . in the inertial subrange, where the subscript denotes the local average over a cubic domain of size ..
46#
發(fā)表于 2025-3-29 13:19:14 | 只看該作者
Reynolds Number Effects on the Turbulent Mixing of Passive Scalarsease. The intermittency of the scalar gradient and dissipation rate fields is measured by the fourth order derivative moment and the multifractal formalism, respectively. Both analysis methods indicate an increasing small-scale intermittency of the mixing for increasing . at fixed ..
47#
發(fā)表于 2025-3-29 18:45:31 | 只看該作者
48#
發(fā)表于 2025-3-29 23:06:43 | 只看該作者
Some Contributions and Challenges of Computational Turbulence Researchxpensive to experiment with them, but it is argued that, if history can be taken as a guide, both problems will become routinely computable in the next decade, and that we will then be able to attack their dynamics.
49#
發(fā)表于 2025-3-30 03:28:00 | 只看該作者
50#
發(fā)表于 2025-3-30 06:57:34 | 只看該作者
nections on corresponding Lie algebroids.It contains a comprIn this book we first review the ideas of Lie groupoid and Lie algebroid, and the associated concepts of connection. We next consider Lie groupoids of fibre morphisms of a ?fibre bundle, and the connections on such groupoids together with t
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 14:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
桦南县| 民和| 文安县| 石河子市| 遵义县| 宜州市| 麻阳| 丰都县| 抚顺市| 汉中市| 长葛市| 哈尔滨市| 安龙县| 通河县| 水城县| 三原县| 崇礼县| 孟津县| 贵定县| 门头沟区| 鄱阳县| 揭西县| 普安县| 武威市| 溧阳市| 秭归县| 元谋县| 青海省| 阜康市| 新源县| 桂平市| 白水县| 阿克苏市| 浪卡子县| 彩票| 东辽县| 长海县| 共和县| 自治县| 文山县| 台北市|