找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics; A. B. Movchan Conference proceedings 2004 Sprin

[復制鏈接]
樓主: 夾子
41#
發(fā)表于 2025-3-28 16:30:45 | 只看該作者
Embedding Formulas and Singularities in Acoustic Scatteringo be related to 2. separate scattering problems for the same geometry, but with different boundary conditions. The number of separate problems that are required is shown to be determined by the number of singularities in the velocity field which in turn is given by the number of strip edges.
42#
發(fā)表于 2025-3-28 20:47:46 | 只看該作者
Dynamics of Charge Rotators and Lattice Waves in a Plasma Environment The dispersion characteristics of the modes are analyzed. The stability of different equilibrium orientations of the rods, phase transitions between the different equilibria, and a critical dependence on the relative strength of the confining potential are analyzed.
43#
發(fā)表于 2025-3-29 01:33:49 | 只看該作者
Propagation of Elastic Waves along Interfaces in Layered Beamserial are connected by a thin and soft adhesive: effectively the layer of adhesive can be described as a surface of discontinuity for the longitudinal displacement. The asymptotic method enables us to derive the . differential equations that describe waves associated with the displacement jump across the adhesive.
44#
發(fā)表于 2025-3-29 06:10:29 | 只看該作者
45#
發(fā)表于 2025-3-29 10:36:35 | 只看該作者
46#
發(fā)表于 2025-3-29 14:48:38 | 只看該作者
47#
發(fā)表于 2025-3-29 16:30:35 | 只看該作者
Transverse Propagating Waves in Perturbed Periodic Structuresmall perturbation to a circular boundary is introduced, and this can be used to derive the e ective boundary conditions for the perturbed inclusion. We examine the e ect of this perturbation on the dispersion curves for the material, and compare this with a finite element modelling of the perturbed structure.
48#
發(fā)表于 2025-3-29 23:41:14 | 只看該作者
49#
發(fā)表于 2025-3-30 02:52:39 | 只看該作者
50#
發(fā)表于 2025-3-30 06:44:55 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-19 05:08
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
博客| 双峰县| 桃源县| 白沙| 苏尼特左旗| 五常市| 台北市| 泾源县| 呼玛县| 临泉县| 萍乡市| 伊金霍洛旗| 顺平县| 尉氏县| 宜阳县| 绥化市| 岱山县| 巍山| 新密市| 商水县| 遂昌县| 曲松县| 德保县| 普定县| 黄陵县| 呼伦贝尔市| 徐闻县| 砀山县| 茶陵县| 隆昌县| 宝兴县| 崇阳县| 兴和县| 家居| 舒兰市| 中宁县| 湘阴县| 开平市| 长丰县| 天柱县| 黔江区|