找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics; A. B. Movchan Conference proceedings 2004 Sprin

[復(fù)制鏈接]
樓主: 夾子
41#
發(fā)表于 2025-3-28 16:30:45 | 只看該作者
Embedding Formulas and Singularities in Acoustic Scatteringo be related to 2. separate scattering problems for the same geometry, but with different boundary conditions. The number of separate problems that are required is shown to be determined by the number of singularities in the velocity field which in turn is given by the number of strip edges.
42#
發(fā)表于 2025-3-28 20:47:46 | 只看該作者
Dynamics of Charge Rotators and Lattice Waves in a Plasma Environment The dispersion characteristics of the modes are analyzed. The stability of different equilibrium orientations of the rods, phase transitions between the different equilibria, and a critical dependence on the relative strength of the confining potential are analyzed.
43#
發(fā)表于 2025-3-29 01:33:49 | 只看該作者
Propagation of Elastic Waves along Interfaces in Layered Beamserial are connected by a thin and soft adhesive: effectively the layer of adhesive can be described as a surface of discontinuity for the longitudinal displacement. The asymptotic method enables us to derive the . differential equations that describe waves associated with the displacement jump across the adhesive.
44#
發(fā)表于 2025-3-29 06:10:29 | 只看該作者
45#
發(fā)表于 2025-3-29 10:36:35 | 只看該作者
46#
發(fā)表于 2025-3-29 14:48:38 | 只看該作者
47#
發(fā)表于 2025-3-29 16:30:35 | 只看該作者
Transverse Propagating Waves in Perturbed Periodic Structuresmall perturbation to a circular boundary is introduced, and this can be used to derive the e ective boundary conditions for the perturbed inclusion. We examine the e ect of this perturbation on the dispersion curves for the material, and compare this with a finite element modelling of the perturbed structure.
48#
發(fā)表于 2025-3-29 23:41:14 | 只看該作者
49#
發(fā)表于 2025-3-30 02:52:39 | 只看該作者
50#
發(fā)表于 2025-3-30 06:44:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 13:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寿阳县| 疏勒县| 加查县| 南江县| 宿州市| 内丘县| 类乌齐县| 突泉县| 尤溪县| 滁州市| 武邑县| 张北县| 班戈县| 陕西省| 天祝| 成武县| 峡江县| 珲春市| 社会| 临澧县| 滁州市| 犍为县| 鹤岗市| 寿光市| 大姚县| 准格尔旗| 永年县| 开封县| 枣阳市| 酒泉市| 桦川县| 开原市| 黄梅县| 汽车| 邵阳市| 宣城市| 肃宁县| 高雄县| 讷河市| 平乡县| 临西县|