找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypoelliptic Laplacian and Bott–Chern Cohomology; A Theorem of Riemann Jean-Michel Bismut Book 2013 Springer Basel 2013 Riemann-Roch theore

[復(fù)制鏈接]
樓主: Helmet
11#
發(fā)表于 2025-3-23 10:25:16 | 只看該作者
12#
發(fā)表于 2025-3-23 17:32:22 | 只看該作者
13#
發(fā)表于 2025-3-23 20:45:25 | 只看該作者
Kleine Kulturgeschichte der Werte,The purpose of this chapter is to study the adiabatic limit of the Levi-Civita connection on a fibred manifold. This study was initiated in [B86a], and continued in Bismut-Cheeger [BC89], Berline-Getzler-Vergne [BeGeV92], Berthomieu-Bismut [BerB94] and Bismut [B97].
14#
發(fā)表于 2025-3-23 23:41:34 | 只看該作者
15#
發(fā)表于 2025-3-24 03:06:27 | 只看該作者
16#
發(fā)表于 2025-3-24 06:56:33 | 只看該作者
https://doi.org/10.1007/978-3-658-23299-3The purpose of this chapter is to specialize the results of . to the case where .. We compute . explicitly, and we establish Theorem 0.1.1 in this special case. In ., we will get rid of any assumption on ...
17#
發(fā)表于 2025-3-24 11:20:30 | 只看該作者
https://doi.org/10.1007/978-3-662-59194-9The purpose of this chapter is to extend the results of [B08, section 3] to the case where .. is not supposed to be closed. More precisely, let . :. be the total space of ., and let . :. be the obvious projection with fibre ..
18#
發(fā)表于 2025-3-24 16:53:37 | 只看該作者
https://doi.org/10.1007/978-3-658-14873-7In this chapter, we construct hypoelliptic superconnection forms . that are associated with the hypoelliptic superconnections of Section 6, and we prove that their class in . (.,.) does not depend on ., and coincides with the class of the elliptic superconnection forms ..
19#
發(fā)表于 2025-3-24 21:25:28 | 只看該作者
20#
發(fā)表于 2025-3-25 02:15:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万盛区| 大埔区| 西乌珠穆沁旗| 若尔盖县| 兴山县| 苏尼特左旗| 叙永县| 祥云县| 安顺市| 宝丰县| 德州市| 琼结县| 镶黄旗| 和静县| 万载县| 肇庆市| 太仆寺旗| 沁水县| 昂仁县| 庄浪县| 台江县| 霍林郭勒市| 河北省| 泌阳县| 康定县| 噶尔县| 庄浪县| 普安县| 合水县| 葫芦岛市| 遵义市| 雷波县| 淅川县| 衡南县| 台东市| 杭锦旗| 天长市| 团风县| 宁远县| 固阳县| 福州市|