找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypervirial Theorems; F. M. Fernández,E. A. Castro Book 1987 Springer-Verlag Berlin Heidelberg 1987 Hamiltonian operator.Schr?dinger equat

[復(fù)制鏈接]
樓主: 女孩
11#
發(fā)表于 2025-3-23 13:46:05 | 只看該作者
12#
發(fā)表于 2025-3-23 17:41:17 | 只看該作者
Hypervirial Theorems for Finite 1D Systems. Von Neumann Boundary Conditionsparison there have not been reported in the current literature. However, some of the next theoretical results to be derived in what follows will be suggestible and interesting enough to deserve their examination.
13#
發(fā)表于 2025-3-23 21:59:22 | 只看該作者
14#
發(fā)表于 2025-3-23 22:11:32 | 只看該作者
15#
發(fā)表于 2025-3-24 02:20:40 | 只看該作者
16#
發(fā)表于 2025-3-24 09:02:58 | 只看該作者
17#
發(fā)表于 2025-3-24 13:36:29 | 只看該作者
https://doi.org/10.1057/9780230287624We showed in section 9 how the RSPT allows one to obtain the energy and the wave function corrections via the resolution of some differential equations. Here we present a method that combines HR and PT and has proven to be extremely powerful when it is applied to simple models.
18#
發(fā)表于 2025-3-24 18:18:38 | 只看該作者
19#
發(fā)表于 2025-3-24 22:16:16 | 只看該作者
https://doi.org/10.1007/978-3-319-76696-6We have deduced the HT for some GBC. The Imposition of limiting conditions for A and B gives some particular BC, one of which will be discussed in this Chapter.
20#
發(fā)表于 2025-3-25 03:12:46 | 只看該作者
Hypervirial Theorems and the Variational TheoremIn Chapter II we have dealt with one of the two most important methods that allow one to get approximations for the solutions of the Schr?dinger equation, i.e. PT. The other relevant method is the variational approx.mation, which will be discussed briefly in this section.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
栖霞市| 崇文区| 清新县| 永春县| 诸城市| 栾川县| 五华县| 西华县| 古浪县| 阆中市| 丰县| 铜川市| 乌鲁木齐县| 和政县| 阿拉尔市| 夏邑县| 蚌埠市| 天台县| 临城县| 屯留县| 太谷县| 玉田县| 东方市| 枣强县| 乌鲁木齐县| 丹寨县| 浪卡子县| 贡觉县| 长岛县| 略阳县| 谢通门县| 应城市| 宾阳县| 四川省| 东平县| 龙海市| 常熟市| 东明县| 涞水县| 绥滨县| 平果县|