找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperspectral Image Analysis; Advances in Machine Saurabh Prasad,Jocelyn Chanussot Book 2020 Springer Nature Switzerland AG 2020 Hyperspec

[復(fù)制鏈接]
查看: 39680|回復(fù): 52
樓主
發(fā)表于 2025-3-21 16:22:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Hyperspectral Image Analysis
副標(biāo)題Advances in Machine
編輯Saurabh Prasad,Jocelyn Chanussot
視頻videohttp://file.papertrans.cn/431/430688/430688.mp4
概述Provides a comprehensive review of the state of the art in hyperspectral image analysis.Presents perspectives from experts who are pioneers in a broad range of signal processing and machine learning f
叢書名稱Advances in Computer Vision and Pattern Recognition
圖書封面Titlebook: Hyperspectral Image Analysis; Advances in Machine  Saurabh Prasad,Jocelyn Chanussot Book 2020 Springer Nature Switzerland AG 2020 Hyperspec
描述.This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models,?anomalous?change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding.?It presents research from leading international experts who have made foundational contributions in these areas.?The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas ofimage analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, g
出版日期Book 2020
關(guān)鍵詞Hyperspectral Image Analysis; Manifold Learning; Subspace Learning; Computational Imaging; Target Recogn
版次1
doihttps://doi.org/10.1007/978-3-030-38617-7
isbn_softcover978-3-030-38619-1
isbn_ebook978-3-030-38617-7Series ISSN 2191-6586 Series E-ISSN 2191-6594
issn_series 2191-6586
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Hyperspectral Image Analysis影響因子(影響力)




書目名稱Hyperspectral Image Analysis影響因子(影響力)學(xué)科排名




書目名稱Hyperspectral Image Analysis網(wǎng)絡(luò)公開度




書目名稱Hyperspectral Image Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Hyperspectral Image Analysis被引頻次




書目名稱Hyperspectral Image Analysis被引頻次學(xué)科排名




書目名稱Hyperspectral Image Analysis年度引用




書目名稱Hyperspectral Image Analysis年度引用學(xué)科排名




書目名稱Hyperspectral Image Analysis讀者反饋




書目名稱Hyperspectral Image Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:56:52 | 只看該作者
2191-6586 in a broad range of signal processing and machine learning f.This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding
板凳
發(fā)表于 2025-3-22 02:34:14 | 只看該作者
地板
發(fā)表于 2025-3-22 07:15:59 | 只看該作者
5#
發(fā)表于 2025-3-22 10:43:28 | 只看該作者
6#
發(fā)表于 2025-3-22 14:07:42 | 只看該作者
7#
發(fā)表于 2025-3-22 19:47:27 | 只看該作者
Low Dimensional Manifold Model in Hyperspectral Image Reconstruction,inimization and advanced numerical discretization. Experiments on the reconstruction of hyperspectral images from sparse and noisy sampling demonstrate the superiority of LDMM?in terms of both speed and accuracy.
8#
發(fā)表于 2025-3-22 23:43:28 | 只看該作者
9#
發(fā)表于 2025-3-23 05:03:42 | 只看該作者
10#
發(fā)表于 2025-3-23 08:46:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 00:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿巴嘎旗| 德格县| 建瓯市| 镇雄县| 陈巴尔虎旗| 林西县| 浙江省| 柞水县| 沅陵县| 武夷山市| 朝阳区| 彭泽县| 库尔勒市| 长子县| 宁津县| 延边| 神农架林区| 平邑县| 长丰县| 云龙县| 拉孜县| 上虞市| 商城县| 淮安市| 山阴县| 虞城县| 普定县| 台湾省| 东台市| 海伦市| 江口县| 望城县| 会昌县| 绥宁县| 万州区| 广安市| 荥经县| 宜章县| 建始县| 汝阳县| 长葛市|