找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperplane Arrangements; An Introduction Alexandru Dimca Textbook 2017 Springer International Publishing AG 2017 hyperplane arrangements.Mi

[復(fù)制鏈接]
樓主: 夸大
41#
發(fā)表于 2025-3-28 14:49:08 | 只看該作者
0172-5939 ons and takes the reader right up to open questions.ContainsThis textbook provides an accessible introduction to the rich and beautiful area of hyperplane arrangement theory, where discrete mathematics, in the form of combinatorics and arithmetic, meets continuous mathematics, in the form of the top
42#
發(fā)表于 2025-3-28 18:51:31 | 只看該作者
Textbook 2017form of combinatorics and arithmetic, meets continuous mathematics, in the form of the topology and Hodge theory of complex algebraic varieties..The topics discussed in this book range from elementary combinatorics and discrete geometry to more advanced material on mixed Hodge structures, logarithmi
43#
發(fā)表于 2025-3-28 23:33:10 | 只看該作者
Invitation to the Trip, the Sylvester–Gallai property for real line arrangements, both the classical projective version and a new affine version. The proof of both results is inspired by Hirzebruch’s approach. The main?topic of this book, the study of the monodromy of the Milnor fiber of a hyperplane arrangement, is also introduced in a very simple setting.
44#
發(fā)表于 2025-3-29 03:33:50 | 只看該作者
45#
發(fā)表于 2025-3-29 10:17:06 | 只看該作者
Logarithmic Connections and Mixed Hodge Structures,ext we discuss the polynomial count property of algebraic varieties . defined over the rationals .. This property always holds when ., while in the case when . is the Milnor fiber . of such an arrangement, this property is related to the triviality of the monodromy action on .. A discussion of Hodge–Deligne polynomials completes this chapter.
46#
發(fā)表于 2025-3-29 12:53:02 | 只看該作者
ng geo-political environment since 2013. In order to further deepening this bilateral economic cooperation, we need to identify sectors of common concerns in the development strategies of two states respectively, and selectively assist Sri Lanka in reshaping its national competitiveness. This will b
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肇东市| 平远县| 安龙县| 杭州市| 财经| 连江县| 溧阳市| 西青区| 顺昌县| 安吉县| 石楼县| 都兰县| 阜城县| 静乐县| 阿荣旗| 阜新| 浮梁县| 家居| 米易县| 达州市| 凤阳县| 喀什市| 平邑县| 平罗县| 克拉玛依市| 鄯善县| 兰考县| 凤山市| 望奎县| 靖宇县| 婺源县| 鄱阳县| 宁远县| 华池县| 水富县| 屯留县| 兰坪| 兴仁县| 宁波市| 新安县| 徐州市|