找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypergeometric Summation; An Algorithmic Appro Wolfram Koepf Textbook 2014Latest edition Springer-Verlag London 2014 Algorithmic Summation.

[復(fù)制鏈接]
樓主: 夾子
11#
發(fā)表于 2025-3-23 10:23:01 | 只看該作者
Wolfram Koepf, Switzerland, on July 10-11, 2006. The manuscripts are organized around three thematic sections which cover several of the major aspects of our rapidly growing ?eld: anatomical modeling and tissue properties, simulation of biophysical processes, as well as systems and applications. The symposium pr
12#
發(fā)表于 2025-3-23 15:05:13 | 只看該作者
13#
發(fā)表于 2025-3-23 21:57:04 | 只看該作者
https://doi.org/10.1007/978-1-4471-6464-7Algorithmic Summation; Antidifference; Basic Hypergeometric Series; Differential Equation; Fasenmyer Alg
14#
發(fā)表于 2025-3-24 01:43:50 | 只看該作者
15#
發(fā)表于 2025-3-24 03:40:19 | 只看該作者
16#
發(fā)表于 2025-3-24 06:54:34 | 只看該作者
,Petkov?ek’s and van Hoeij’s Algorithm,if the order of the resulting recurrence equation is one, or if the latter contains only two shifts . and . for some ., then one finds a hypergeometric term representation for the sum under consideration using . initial values. In this chapter we give algorithms which find all hypergeometric term solutions of a holonomic recurrence equation.
17#
發(fā)表于 2025-3-24 14:16:03 | 只看該作者
18#
發(fā)表于 2025-3-24 16:04:29 | 只看該作者
Hypergeometric Summation978-1-4471-6464-7Series ISSN 0172-5939 Series E-ISSN 2191-6675
19#
發(fā)表于 2025-3-24 21:39:59 | 只看該作者
The Gamma Function,Apart from the elementary transcendental functions such as the exponential and trigonometric functions and their inverses, the Gamma function is probably the most important transcendental function. It was defined by Euler to interpolate the factorials at noninteger arguments.
20#
發(fā)表于 2025-3-25 01:23:44 | 只看該作者
Hypergeometric Identities,In this chapter we deal with hypergeometric identities.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
杂多县| 前郭尔| 盐山县| 蛟河市| 土默特左旗| 巴彦淖尔市| 哈密市| 松桃| 玛沁县| 绍兴县| 内丘县| 武隆县| 汉中市| 鞍山市| 城固县| 乐清市| 江孜县| 宁海县| 越西县| 江华| 双城市| 巴东县| 安达市| 柳江县| 建阳市| 丰都县| 修文县| 汉阴县| 平江县| 清徐县| 延津县| 淳化县| 台北市| 临洮县| 白沙| 军事| 木里| 新龙县| 铜川市| 连城县| 饶阳县|