找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperbolic Systems with Analytic Coefficients; Well-posedness of th Tatsuo Nishitani Book 2014 Springer International Publishing Switzerlan

[復(fù)制鏈接]
樓主: hector
21#
發(fā)表于 2025-3-25 05:50:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:55:34 | 只看該作者
https://doi.org/10.1007/978-3-319-02273-435L45,35L40,35L55; Cauchy problem; Hyperbolic systems; Real analytic coefficients; Strongly hyperbolic; W
23#
發(fā)表于 2025-3-25 14:01:41 | 只看該作者
Tatsuo NishitaniIncludes supplementary material:
24#
發(fā)表于 2025-3-25 16:58:27 | 只看該作者
25#
發(fā)表于 2025-3-25 22:15:04 | 只看該作者
26#
發(fā)表于 2025-3-26 03:27:37 | 只看該作者
Two by Two Systems with Two Independent Variables,his necessary and sufficient condition we provide many instructive examples. For instance, we see that there are examples which are strictly hyperbolic apart from the initial line with polynomial coefficients such that the Cauchy problem is not . . well posed for any lower order term.
27#
發(fā)表于 2025-3-26 07:33:16 | 只看該作者
Systems with Nondegenerate Characteristics,then there exists a smooth symmetrizer and hence the Cauchy problem for . is . . well posed for any lower order term. Finally we discuss about the stability of symmetric systems in the space of hyperbolic systems.
28#
發(fā)表于 2025-3-26 12:10:24 | 只看該作者
29#
發(fā)表于 2025-3-26 14:40:06 | 只看該作者
0075-8434 ix coefficients. Mainly two questions are discussed:.(A) Under which conditions on lower order terms is the Cauchy problem well posed?.(B) When is the Cauchy problem well posed for any lower order term?.For first order two by two systems with two independent variables with real analytic coefficients
30#
發(fā)表于 2025-3-26 18:11:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鞍山市| 宁陕县| 晋江市| 平湖市| 陈巴尔虎旗| 长春市| 西吉县| 赤峰市| 古蔺县| 壤塘县| 定州市| 连州市| 沂源县| 策勒县| 兴宁市| 阳高县| 扶沟县| 屏东县| 临桂县| 和静县| 同江市| 云梦县| 体育| 浦江县| 木兰县| 冷水江市| 玉环县| 虹口区| 开阳县| 丰原市| 泰和县| 虞城县| 永顺县| 长宁区| 台湾省| 任丘市| 平阳县| 玉林市| 靖安县| 营口市| 民乐县|