找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperbolic Systems with Analytic Coefficients; Well-posedness of th Tatsuo Nishitani Book 2014 Springer International Publishing Switzerlan

[復(fù)制鏈接]
樓主: hector
21#
發(fā)表于 2025-3-25 05:50:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:55:34 | 只看該作者
https://doi.org/10.1007/978-3-319-02273-435L45,35L40,35L55; Cauchy problem; Hyperbolic systems; Real analytic coefficients; Strongly hyperbolic; W
23#
發(fā)表于 2025-3-25 14:01:41 | 只看該作者
Tatsuo NishitaniIncludes supplementary material:
24#
發(fā)表于 2025-3-25 16:58:27 | 只看該作者
25#
發(fā)表于 2025-3-25 22:15:04 | 只看該作者
26#
發(fā)表于 2025-3-26 03:27:37 | 只看該作者
Two by Two Systems with Two Independent Variables,his necessary and sufficient condition we provide many instructive examples. For instance, we see that there are examples which are strictly hyperbolic apart from the initial line with polynomial coefficients such that the Cauchy problem is not . . well posed for any lower order term.
27#
發(fā)表于 2025-3-26 07:33:16 | 只看該作者
Systems with Nondegenerate Characteristics,then there exists a smooth symmetrizer and hence the Cauchy problem for . is . . well posed for any lower order term. Finally we discuss about the stability of symmetric systems in the space of hyperbolic systems.
28#
發(fā)表于 2025-3-26 12:10:24 | 只看該作者
29#
發(fā)表于 2025-3-26 14:40:06 | 只看該作者
0075-8434 ix coefficients. Mainly two questions are discussed:.(A) Under which conditions on lower order terms is the Cauchy problem well posed?.(B) When is the Cauchy problem well posed for any lower order term?.For first order two by two systems with two independent variables with real analytic coefficients
30#
發(fā)表于 2025-3-26 18:11:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 05:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赤城县| 南乐县| 广南县| 肇庆市| 互助| 乡宁县| 寿光市| 应城市| 突泉县| 红桥区| 四川省| 如东县| 定西市| 玉环县| 福泉市| 农安县| 毕节市| 新闻| 大埔县| 军事| 阿荣旗| 威海市| 交口县| 祁东县| 安多县| 三原县| 乐亭县| 新竹县| 达州市| 泽州县| 湖北省| 白河县| 张家川| 鄂托克前旗| 古蔺县| 周至县| 新乐市| 洪湖市| 新竹市| 黄浦区| 奉贤区|