找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hydrodynamik; Georg Wolschin Textbook 2021Latest edition Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2021 Euler Gleichu

[復(fù)制鏈接]
樓主: Daidzein
41#
發(fā)表于 2025-3-28 18:12:58 | 只看該作者
42#
發(fā)表于 2025-3-28 20:19:05 | 只看該作者
43#
發(fā)表于 2025-3-29 02:39:58 | 只看該作者
Relativistische Hydrodynamik,e Einführung relativistischer Variablen berücksichtigt hatten, sollen nun die Grundgleichungen der Hydrodynamik entsprechend modifiziert werden..Sind starke Gravitationsfelder vorhanden, kann es notwendig sein, auch die allgemeine Relativit?tstheorie zu berücksichtigen; hier beschr?nken wir uns jedo
44#
發(fā)表于 2025-3-29 05:26:15 | 只看該作者
Astrophysikalische Hydrodynamik,ischen Umgebungen. Sterne bestehen aus Gasen, die im Wesentlichen homogen sind und ihr eigenes Gravitationsfeld erzeugen - sie simulieren die Bewegung eines Fluids im Feld, so dass sich hydrodynamische Methoden verwenden lassen. Alle Arten von hydrodynamischem Fluss, die sich auf der Erde beobachten
45#
發(fā)表于 2025-3-29 08:38:50 | 只看該作者
,Hydrodynamik der Superflüssigkeiten, Kern und Atom den Spin Null, so dass hier die Bose-Einstein-Statistik gilt, w?hrend He-3 Spin 1/2 hat und dementsprechend unterhalb des Siedepunktes von3,19 K eine Fermi-Flüssigkeit ist. In diesem Kapitel konzentrieren wir uns auf Bose-Flüssigkeiten und beschreiben die Hydrodynamik von Superfluiden
46#
發(fā)表于 2025-3-29 12:44:43 | 只看該作者
https://doi.org/10.1007/978-3-662-64144-6Euler Gleichungen; Hydrodynamik; Ideale Fluide; Navier-Stokes-Gleichungen; Turbulenz; Viskose Fluide
47#
發(fā)表于 2025-3-29 17:28:31 | 只看該作者
48#
發(fā)表于 2025-3-29 23:15:38 | 只看該作者
49#
發(fā)表于 2025-3-30 00:04:36 | 只看該作者
50#
發(fā)表于 2025-3-30 05:19:49 | 只看該作者
Einleitung,Die Hydrodynamik ist ein Gebiet der Kontinuumsmechanik, der Mechanik der deformierbaren Medien, das sich auf die Betrachtung von Fluiden mit bestimmten Eigenschaften konzentriert. In der Einleitung wird der Zusammenhang zwischen der Hydrodynamik und den verwandten und übergeordneten Disziplinen dargestellt, und die Grundgleichungen werden benannt.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东宁县| 黑山县| 襄垣县| 三河市| 两当县| 北安市| 侯马市| 澄江县| 富平县| 四川省| 剑川县| 阜平县| 禹州市| 遵义县| 民乐县| 洞头县| 汉源县| 砚山县| 神农架林区| 苍溪县| 正阳县| 溧阳市| 安岳县| 始兴县| 龙游县| 湟中县| 抚顺县| 商洛市| 南城县| 抚远县| 信宜市| 奇台县| 阳新县| 伊金霍洛旗| 荔波县| 兴义市| 乌拉特后旗| 昌图县| 合山市| 昭觉县| 探索|